dgoot commited on
Commit
ca260a2
Β·
verified Β·
1 Parent(s): b6de104

Update app.py

Browse files

Replace with text-to-image pipeline

Files changed (1) hide show
  1. app.py +13 -10
app.py CHANGED
@@ -5,7 +5,11 @@ import gradio as gr
5
  import requests
6
  import spaces
7
  import torch
8
- from diffusers import AutoencoderKL, StableDiffusionXLImg2ImgPipeline
 
 
 
 
9
  from loguru import logger
10
  from PIL import Image
11
  from tqdm import tqdm
@@ -44,7 +48,8 @@ download(
44
 
45
  vae = AutoencoderKL.from_single_file(vae_path)
46
 
47
- pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(
 
48
  model_path, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", vae=vae
49
  )
50
  pipe = pipe.to("cuda")
@@ -54,18 +59,16 @@ pipe = pipe.to("cuda")
54
  @spaces.GPU
55
  def generate(
56
  prompt: str,
57
- init_image: Image.Image,
58
  strength: float,
59
  num_inference_steps: int,
60
  guidance_scale: float,
61
  progress=gr.Progress(track_tqdm=True),
62
  ):
63
- logger.info(
64
- f"Starting image generation: {dict(prompt=prompt, image=init_image, strength=strength)}"
65
- )
66
 
67
- # Downscale the image
68
- init_image.thumbnail((1024, 1024))
69
 
70
  additional_args = {
71
  k: v
@@ -79,7 +82,7 @@ def generate(
79
 
80
  images = pipe(
81
  prompt=prompt,
82
- image=init_image,
83
  **additional_args,
84
  ).images
85
 
@@ -90,7 +93,7 @@ demo = gr.Interface(
90
  fn=generate,
91
  inputs=[
92
  gr.Text(label="Prompt"),
93
- gr.Image(label="Init image", type="pil"),
94
  gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.0),
95
  gr.Slider(label="Number of inference steps", minimum=0, maximum=100, value=0),
96
  gr.Slider(label="Guidance scale", minimum=0.0, maximum=100.0, value=0.0),
 
5
  import requests
6
  import spaces
7
  import torch
8
+ from diffusers import (
9
+ AutoencoderKL,
10
+ StableDiffusionXLImg2ImgPipeline,
11
+ StableDiffusionXLPipeline,
12
+ )
13
  from loguru import logger
14
  from PIL import Image
15
  from tqdm import tqdm
 
48
 
49
  vae = AutoencoderKL.from_single_file(vae_path)
50
 
51
+ # pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(
52
+ pipe = StableDiffusionXLPipeline.from_single_file(
53
  model_path, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", vae=vae
54
  )
55
  pipe = pipe.to("cuda")
 
59
  @spaces.GPU
60
  def generate(
61
  prompt: str,
62
+ # init_image: Image.Image,
63
  strength: float,
64
  num_inference_steps: int,
65
  guidance_scale: float,
66
  progress=gr.Progress(track_tqdm=True),
67
  ):
68
+ logger.info(f"Starting image generation: {dict(prompt=prompt, strength=strength)}")
 
 
69
 
70
+ # # Downscale the image
71
+ # init_image.thumbnail((1024, 1024))
72
 
73
  additional_args = {
74
  k: v
 
82
 
83
  images = pipe(
84
  prompt=prompt,
85
+ # image=init_image,
86
  **additional_args,
87
  ).images
88
 
 
93
  fn=generate,
94
  inputs=[
95
  gr.Text(label="Prompt"),
96
+ # gr.Image(label="Init image", type="pil"),
97
  gr.Slider(label="Strength", minimum=0.0, maximum=1.0, value=0.0),
98
  gr.Slider(label="Number of inference steps", minimum=0, maximum=100, value=0),
99
  gr.Slider(label="Guidance scale", minimum=0.0, maximum=100.0, value=0.0),