File size: 1,225 Bytes
ea326f6
 
1709591
ea326f6
 
fab2111
 
 
 
 
 
ea326f6
fab2111
 
 
 
ea326f6
fab2111
 
ea326f6
fab2111
 
 
 
 
 
 
d64c0c1
 
fab2111
 
 
cb0a970
fab2111
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import cv2
from fastai.vision.all import *
import numpy as np
import gradio as gr

fnames = get_image_files("./albumentations/original")
def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png"
codes = np.loadtxt('labels.txt', dtype=str)
w, h = 768, 1152
img_size = (w,h)
im_size = (h,w)

dls = SegmentationDataLoaders.from_label_func(
    ".", bs=3, fnames = fnames, label_func = label_func, codes = codes,
    item_tfms=Resize(img_size)
)

learn = unet_learner(dls, resnet34)
learn.load('learn')

def predict_segmentation(img):
    # Convert the input image to grayscale
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Resize the image to the size of the training images
    resized_img = cv2.resize(gray_img, im_size)
    # Predict the segmentation mask
    pred = learn.predict(resized_img)
    scaled_pred = (pred[0] * 255).astype(np.uint8)
    output_image = PILImage.create(scaled_pred)
    return output_image

input_image = gr.inputs.Image()
output_image = gr.outputs.Image(type='pil')
app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=output_image, title='Microstructure Segmentation', description='Segment the input image into grain and background.')
app.launch()