import cv2 from fastai.vision.all import * import numpy as np import gradio as gr from scipy import ndimage fnames = get_image_files("./albumentations/original") def label_func(fn): return "./albumentations/labelled/"f"{fn.stem}.png" codes = np.loadtxt('labels.txt', dtype=str) w, h = 768, 1152 img_size = (w,h) im_size = (h,w) dls = SegmentationDataLoaders.from_label_func( ".", bs=3, fnames = fnames, label_func = label_func, codes = codes, item_tfms=Resize(img_size) ) learn = unet_learner(dls, resnet34) learn.load('learn') def segmentImage(img_path): img = cv2.imread(img_path, 0) for i in range(img.shape[0]): for j in range(img.shape[1]): if img[i][j] > 0: img[i][j] = 1 kernel = np.ones((3,3), np.uint8) img = cv2.erode(img, kernel, iterations=1) img = cv2.dilate(img, kernel, iterations=1) img = ndimage.binary_fill_holes(img).astype(int) labels, nlabels = ndimage.label(img) colors = np.random.randint(0, 255, (nlabels + 1, 3)) colors[0] = 0 img_color = colors[labels] return img_color def predict_segmentation(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) resized_img = cv2.resize(gray_img, im_size) pred = learn.predict(resized_img) color_pred = pred[0].show(ctx=None, cmap='gray', alpha=None) color_pred_array = color_pred_array.astype(np.uint8) output_image = Image.fromarray(color_pred_array) # Save the image to a temporary file temp_file = 'temp.png' output_image.save(temp_file) # Call the segmentImage function segmented_image = segmentImage(temp_file) return output_image, segmented_image input_image = gr.inputs.Image() output_image1 = gr.outputs.Image(type='pil') output_image2 = gr.outputs.Image(type='pil') app = gr.Interface(fn=predict_segmentation, inputs=input_image, outputs=[output_image1, output_image2], title='Microstructure Segmentation', description='Segment the input image into grain and background.') app.launch()