File size: 1,507 Bytes
17c015f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
from torchvision import transforms


class simpleCNN(nn.Module):
    def __init__(self, num_classes=3):
        super(simpleCNN, self).__init__()
        self.name = "simpleCNN"
        self.conv1 = nn.Conv2d(3, 5, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(5, 10, 5)
        self.fc1 = nn.Linear(10 * 5 * 5, 32)
        self.fc2 = nn.Linear(32, num_classes)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 10 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x


net = simpleCNN(num_classes=3)
net.load_state_dict(torch.load("./ckpt.pth", map_location=torch.device("cpu")))
net.eval()
class_labels = ["other", "car", "truck"]

transform = transforms.Compose(
    [
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)


@torch.no_grad()
def predict(img):
    global net
    img = Image.fromarray(img.astype("uint8"), "RGB")
    img = transform(img).unsqueeze(0)
    pred = net(img).detach().numpy()[0]
    pred = np.exp(pred) / np.sum(np.exp(pred))
    return {class_labels[i]: float(pred[i]) for i in range(len(class_labels))}


iface = gr.Interface(fn=predict, inputs="image", outputs="label")
iface.launch()