Spaces:
Sleeping
Sleeping
Divax
commited on
Commit
•
63b9325
1
Parent(s):
6705ed9
files
Browse files- app.py +242 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch
|
5 |
+
import transformers
|
6 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
7 |
+
from datasets import Dataset
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Set random seeds for reproducibility
|
11 |
+
random.seed(42)
|
12 |
+
np.random.seed(42)
|
13 |
+
torch.manual_seed(42)
|
14 |
+
|
15 |
+
def generate_demo_data(num_samples=60):
|
16 |
+
# Generate meaningful sentences on various topics
|
17 |
+
subjects = [
|
18 |
+
'Artificial intelligence', 'Climate change', 'Renewable energy',
|
19 |
+
'Space exploration', 'Quantum computing', 'Genetic engineering',
|
20 |
+
'Blockchain technology', 'Virtual reality', 'Cybersecurity',
|
21 |
+
'Biotechnology', 'Nanotechnology', 'Astrophysics'
|
22 |
+
]
|
23 |
+
verbs = [
|
24 |
+
'is transforming', 'is influencing', 'is revolutionizing',
|
25 |
+
'is challenging', 'is advancing', 'is reshaping', 'is impacting',
|
26 |
+
'is enhancing', 'is disrupting', 'is redefining'
|
27 |
+
]
|
28 |
+
objects = [
|
29 |
+
'modern science', 'global economies', 'healthcare systems',
|
30 |
+
'communication methods', 'educational approaches',
|
31 |
+
'environmental policies', 'social interactions', 'the job market',
|
32 |
+
'data security', 'the entertainment industry'
|
33 |
+
]
|
34 |
+
data = []
|
35 |
+
for i in range(num_samples):
|
36 |
+
subject = random.choice(subjects)
|
37 |
+
verb = random.choice(verbs)
|
38 |
+
obj = random.choice(objects)
|
39 |
+
sentence = f"{subject} {verb} {obj}."
|
40 |
+
data.append(sentence)
|
41 |
+
return data
|
42 |
+
|
43 |
+
def load_data(uploaded_file):
|
44 |
+
# Load user-uploaded text file
|
45 |
+
data = uploaded_file.read().decode("utf-8")
|
46 |
+
data = data.splitlines()
|
47 |
+
return data
|
48 |
+
|
49 |
+
def prepare_dataset(data, tokenizer, block_size=128):
|
50 |
+
# Tokenize the texts
|
51 |
+
def tokenize_function(examples):
|
52 |
+
return tokenizer(examples['text'], truncation=True, max_length=block_size, padding='max_length')
|
53 |
+
|
54 |
+
raw_dataset = Dataset.from_dict({'text': data})
|
55 |
+
tokenized_dataset = raw_dataset.map(tokenize_function, batched=True, remove_columns=['text'])
|
56 |
+
|
57 |
+
# Create labels for language modeling
|
58 |
+
tokenized_dataset = tokenized_dataset.map(
|
59 |
+
lambda examples: {'labels': examples['input_ids']},
|
60 |
+
batched=True
|
61 |
+
)
|
62 |
+
|
63 |
+
# Set the format for PyTorch
|
64 |
+
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
65 |
+
|
66 |
+
return tokenized_dataset
|
67 |
+
|
68 |
+
def fitness_function(individual, train_dataset, model, tokenizer):
|
69 |
+
# Define the training arguments
|
70 |
+
training_args = TrainingArguments(
|
71 |
+
output_dir='./results',
|
72 |
+
overwrite_output_dir=True,
|
73 |
+
num_train_epochs=individual['epochs'],
|
74 |
+
per_device_train_batch_size=individual['batch_size'],
|
75 |
+
learning_rate=individual['learning_rate'],
|
76 |
+
logging_steps=10,
|
77 |
+
save_steps=10,
|
78 |
+
save_total_limit=2,
|
79 |
+
report_to='none', # Disable logging to Wandb or other services
|
80 |
+
)
|
81 |
+
|
82 |
+
data_collator = DataCollatorForLanguageModeling(
|
83 |
+
tokenizer=tokenizer, mlm=False
|
84 |
+
)
|
85 |
+
|
86 |
+
# Train the model
|
87 |
+
trainer = Trainer(
|
88 |
+
model=model,
|
89 |
+
args=training_args,
|
90 |
+
data_collator=data_collator,
|
91 |
+
train_dataset=train_dataset,
|
92 |
+
eval_dataset=None,
|
93 |
+
)
|
94 |
+
|
95 |
+
trainer.train()
|
96 |
+
|
97 |
+
# For simplicity, use final training loss as fitness score
|
98 |
+
logs = [log for log in trainer.state.log_history if 'loss' in log]
|
99 |
+
if logs:
|
100 |
+
loss = logs[-1]['loss']
|
101 |
+
else:
|
102 |
+
loss = float('inf')
|
103 |
+
return loss
|
104 |
+
|
105 |
+
# Genetic Algorithm Functions
|
106 |
+
def create_population(size, param_bounds):
|
107 |
+
population = []
|
108 |
+
for _ in range(size):
|
109 |
+
individual = {
|
110 |
+
'learning_rate': random.uniform(*param_bounds['learning_rate']),
|
111 |
+
'epochs': random.randint(*param_bounds['epochs']),
|
112 |
+
'batch_size': random.choice(param_bounds['batch_size']),
|
113 |
+
}
|
114 |
+
population.append(individual)
|
115 |
+
return population
|
116 |
+
|
117 |
+
def select_mating_pool(population, fitnesses, num_parents):
|
118 |
+
parents = [population[i] for i in np.argsort(fitnesses)[:num_parents]]
|
119 |
+
return parents
|
120 |
+
|
121 |
+
def crossover(parents, offspring_size):
|
122 |
+
offspring = []
|
123 |
+
for _ in range(offspring_size):
|
124 |
+
parent1 = random.choice(parents)
|
125 |
+
parent2 = random.choice(parents)
|
126 |
+
child = {
|
127 |
+
'learning_rate': random.choice([parent1['learning_rate'], parent2['learning_rate']]),
|
128 |
+
'epochs': random.choice([parent1['epochs'], parent2['epochs']]),
|
129 |
+
'batch_size': random.choice([parent1['batch_size'], parent2['batch_size']]),
|
130 |
+
}
|
131 |
+
offspring.append(child)
|
132 |
+
return offspring
|
133 |
+
|
134 |
+
def mutation(offspring, param_bounds, mutation_rate=0.1):
|
135 |
+
for individual in offspring:
|
136 |
+
if random.random() < mutation_rate:
|
137 |
+
individual['learning_rate'] = random.uniform(*param_bounds['learning_rate'])
|
138 |
+
if random.random() < mutation_rate:
|
139 |
+
individual['epochs'] = random.randint(*param_bounds['epochs'])
|
140 |
+
if random.random() < mutation_rate:
|
141 |
+
individual['batch_size'] = random.choice(param_bounds['batch_size'])
|
142 |
+
return offspring
|
143 |
+
|
144 |
+
# Streamlit App
|
145 |
+
def main():
|
146 |
+
st.title("GPT-2 Fine-Tuning with Genetic Algorithm")
|
147 |
+
|
148 |
+
option = st.sidebar.selectbox(
|
149 |
+
'Choose Data Source',
|
150 |
+
('DEMO', 'Upload Text File')
|
151 |
+
)
|
152 |
+
|
153 |
+
if option == 'DEMO':
|
154 |
+
st.write("Using DEMO data...")
|
155 |
+
data = generate_demo_data()
|
156 |
+
else:
|
157 |
+
st.write("Upload a text file for fine-tuning.")
|
158 |
+
uploaded_file = st.file_uploader("Choose a text file", type="txt")
|
159 |
+
if uploaded_file is not None:
|
160 |
+
data = load_data(uploaded_file)
|
161 |
+
else:
|
162 |
+
st.warning("Please upload a text file.")
|
163 |
+
st.stop()
|
164 |
+
|
165 |
+
# Load tokenizer and model
|
166 |
+
st.write("Loading GPT-2 tokenizer and model...")
|
167 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
168 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
169 |
+
model.to('cuda' if torch.cuda.is_available() else 'cpu')
|
170 |
+
|
171 |
+
# Set the pad token
|
172 |
+
tokenizer.pad_token = tokenizer.eos_token
|
173 |
+
model.config.pad_token_id = model.config.eos_token_id
|
174 |
+
|
175 |
+
# Prepare dataset
|
176 |
+
st.write("Preparing dataset...")
|
177 |
+
train_dataset = prepare_dataset(data, tokenizer)
|
178 |
+
|
179 |
+
# GA Parameters
|
180 |
+
st.sidebar.subheader("Genetic Algorithm Parameters")
|
181 |
+
population_size = st.sidebar.number_input("Population Size", 4, 20, 6)
|
182 |
+
num_generations = st.sidebar.number_input("Number of Generations", 1, 10, 3)
|
183 |
+
num_parents = st.sidebar.number_input("Number of Parents", 2, population_size, 2)
|
184 |
+
mutation_rate = st.sidebar.slider("Mutation Rate", 0.0, 1.0, 0.1)
|
185 |
+
|
186 |
+
# Hyperparameter bounds
|
187 |
+
param_bounds = {
|
188 |
+
'learning_rate': (1e-5, 5e-5),
|
189 |
+
'epochs': (1, 3),
|
190 |
+
'batch_size': [2, 4, 8]
|
191 |
+
}
|
192 |
+
|
193 |
+
if st.button("Start Training"):
|
194 |
+
st.write("Initializing Genetic Algorithm...")
|
195 |
+
population = create_population(population_size, param_bounds)
|
196 |
+
best_individual = None
|
197 |
+
best_fitness = float('inf')
|
198 |
+
fitness_history = []
|
199 |
+
|
200 |
+
progress_bar = st.progress(0)
|
201 |
+
status_text = st.empty()
|
202 |
+
|
203 |
+
total_evaluations = num_generations * len(population)
|
204 |
+
current_evaluation = 0
|
205 |
+
|
206 |
+
for generation in range(num_generations):
|
207 |
+
st.write(f"Generation {generation+1}/{num_generations}")
|
208 |
+
fitnesses = []
|
209 |
+
for idx, individual in enumerate(population):
|
210 |
+
status_text.text(f"Evaluating individual {idx+1}/{len(population)} in generation {generation+1}")
|
211 |
+
# Clone the model to avoid reusing the same model
|
212 |
+
model_clone = GPT2LMHeadModel.from_pretrained('gpt2')
|
213 |
+
model_clone.to('cuda' if torch.cuda.is_available() else 'cpu')
|
214 |
+
fitness = fitness_function(individual, train_dataset, model_clone, tokenizer)
|
215 |
+
fitnesses.append(fitness)
|
216 |
+
if fitness < best_fitness:
|
217 |
+
best_fitness = fitness
|
218 |
+
best_individual = individual
|
219 |
+
current_evaluation += 1
|
220 |
+
progress_bar.progress(current_evaluation / total_evaluations)
|
221 |
+
fitness_history.append(min(fitnesses))
|
222 |
+
parents = select_mating_pool(population, fitnesses, num_parents)
|
223 |
+
offspring_size = population_size - num_parents
|
224 |
+
offspring = crossover(parents, offspring_size)
|
225 |
+
offspring = mutation(offspring, param_bounds, mutation_rate)
|
226 |
+
population = parents + offspring
|
227 |
+
|
228 |
+
st.write("Training completed!")
|
229 |
+
st.write(f"Best Hyperparameters: {best_individual}")
|
230 |
+
st.write(f"Best Fitness (Loss): {best_fitness}")
|
231 |
+
|
232 |
+
# Plot fitness history
|
233 |
+
st.line_chart(fitness_history)
|
234 |
+
|
235 |
+
# Save the best model
|
236 |
+
if st.button("Save Model"):
|
237 |
+
model_clone.save_pretrained('./fine_tuned_model')
|
238 |
+
tokenizer.save_pretrained('./fine_tuned_model')
|
239 |
+
st.write("Model saved successfully!")
|
240 |
+
|
241 |
+
if __name__ == "__main__":
|
242 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy
|
3 |
+
tensorflow
|
4 |
+
scikit-learn
|
5 |
+
transformers
|
6 |
+
torch
|
7 |
+
accelerate
|
8 |
+
datasets
|
9 |
+
|