gemma2-2b-chess / app.py
diabolic6045's picture
Create app.py
3e8f413 verified
raw
history blame
1.2 kB
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
import spaces
# Load the model and configuration
config = PeftConfig.from_pretrained("diabolic6045/gemma-2-2b-chess-adapter")
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b")
model = PeftModel.from_pretrained(base_model, "diabolic6045/gemma-2-2b-chess-adapter")
# Define a function that takes user input and returns the model's output
@spaces.GPU(duration=120)
def generate_text(prompt):
input_ids = model.tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100)
return model.tokenizer.decode(output[0], skip_special_tokens=True)
# Create a Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Input prompt"),
outputs=gr.Textbox(label="Generated text"),
title="Chess Text Generation with Gemma-2-2B",
description="Enter a prompt and the model will generate a response.",
examples=[
["What is the best opening move in chess?"],
["What is the Ruy Lopez opening?"],
["What is the Sicilian Defense?"],
],
)
# Launch the Gradio app
demo.launch()