import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM import spaces # Load the model and configuration config = PeftConfig.from_pretrained("diabolic6045/gemma-2-2b-chess-adapter") base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2-2b") model = PeftModel.from_pretrained(base_model, "diabolic6045/gemma-2-2b-chess-adapter") # Define a function that takes user input and returns the model's output @spaces.GPU(duration=120) def generate_text(prompt): input_ids = model.tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=100) return model.tokenizer.decode(output[0], skip_special_tokens=True) # Create a Gradio interface demo = gr.Interface( fn=generate_text, inputs=gr.Textbox(label="Input prompt"), outputs=gr.Textbox(label="Generated text"), title="Chess Text Generation with Gemma-2-2B", description="Enter a prompt and the model will generate a response.", examples=[ ["What is the best opening move in chess?"], ["What is the Ruy Lopez opening?"], ["What is the Sicilian Defense?"], ], ) # Launch the Gradio app demo.launch()