欧卫
'add_app_files'
58627fa
import torch
from transformers import ElectraTokenizerFast
class AnswerAwareTokenizer():
def __init__(self, total_maxlen, bert_model='google/electra-base-discriminator'):
self.total_maxlen = total_maxlen
self.tok = ElectraTokenizerFast.from_pretrained(bert_model)
def process(self, questions, passages, all_answers=None, mask=None):
return TokenizationObject(self, questions, passages, all_answers, mask)
def tensorize(self, questions, passages):
query_lengths = self.tok(questions, padding='longest', return_tensors='pt').attention_mask.sum(-1)
encoding = self.tok(questions, passages, padding='longest', truncation='longest_first',
return_tensors='pt', max_length=self.total_maxlen, add_special_tokens=True)
return encoding, query_lengths
def get_all_candidates(self, encoding, index):
offsets, endpositions = self.all_word_positions(encoding, index)
candidates = [(offset, endpos)
for idx, offset in enumerate(offsets)
for endpos in endpositions[idx:idx+10]]
return candidates
def all_word_positions(self, encoding, index):
words = encoding.word_ids(index)
offsets = [position
for position, (last_word_number, current_word_number) in enumerate(zip([-1] + words, words))
if last_word_number != current_word_number]
endpositions = offsets[1:] + [len(words)]
return offsets, endpositions
def characters_to_tokens(self, text, answers, encoding, index, offset, endpos):
# print(text, answers, encoding, index, offset, endpos)
# endpos = endpos - 1
for offset_ in range(offset, len(text)+1):
tokens_offset = encoding.char_to_token(index, offset_)
# print(f'tokens_offset = {tokens_offset}')
if tokens_offset is not None:
break
for endpos_ in range(endpos, len(text)+1):
tokens_endpos = encoding.char_to_token(index, endpos_)
# print(f'tokens_endpos = {tokens_endpos}')
if tokens_endpos is not None:
break
# None on whitespace!
assert tokens_offset is not None, (text, answers, offset)
# assert tokens_endpos is not None, (text, answers, endpos)
tokens_endpos = tokens_endpos if tokens_endpos is not None else len(encoding.tokens(index))
return tokens_offset, tokens_endpos
def tokens_to_answer(self, encoding, index, text, tokens_offset, tokens_endpos):
# print(encoding, index, text, tokens_offset, tokens_endpos, len(encoding.tokens(index)))
char_offset = encoding.word_to_chars(index, encoding.token_to_word(index, tokens_offset)).start
try:
char_next_offset = encoding.word_to_chars(index, encoding.token_to_word(index, tokens_endpos)).start
char_endpos = char_next_offset
except:
char_endpos = encoding.word_to_chars(index, encoding.token_to_word(index, tokens_endpos-1)).end
assert char_offset is not None
assert char_endpos is not None
return text[char_offset:char_endpos].strip()
class TokenizationObject():
def __init__(self, tokenizer: AnswerAwareTokenizer, questions, passages, answers=None, mask=None):
assert type(questions) is list and type(passages) is list
assert len(questions) in [1, len(passages)]
if mask is None:
mask = [True for _ in passages]
self.mask = mask
self.tok = tokenizer
self.questions = questions if len(questions) == len(passages) else questions * len(passages)
self.passages = passages
self.answers = answers
self.encoding, self.query_lengths = self._encode()
self.passages_only_encoding, self.candidates, self.candidates_list = self._candidize()
if answers is not None:
self.gold_candidates = self.answers # self._answerize()
def _encode(self):
return self.tok.tensorize(self.questions, self.passages)
def _candidize(self):
encoding = self.tok.tok(self.passages, add_special_tokens=False)
all_candidates = [self.tok.get_all_candidates(encoding, index) for index in range(len(self.passages))]
bsize, maxcands = len(self.passages), max(map(len, all_candidates))
all_candidates = [cands + [(-1, -1)] * (maxcands - len(cands)) for cands in all_candidates]
candidates = torch.tensor(all_candidates)
assert candidates.size() == (bsize, maxcands, 2), (candidates.size(), (bsize, maxcands, 2), (self.questions, self.passages))
candidates = candidates + self.query_lengths.unsqueeze(-1).unsqueeze(-1)
return encoding, candidates, all_candidates