import os import logging import torch import datetime import requests from google.cloud import storage from transformers import AutoImageProcessor, AutoModelForObjectDetection from label_studio_ml.model import LabelStudioMLBase from lxml import etree from uuid import uuid4 from PIL import Image from creds import get_credentials from io import BytesIO def generate_download_signed_url_v4(blob_name): """Generates a v4 signed URL for downloading a blob. Note that this method requires a service account key file. You can not use this if you are using Application Default Credentials from Google Compute Engine or from the Google Cloud SDK. """ bucket_name = os.getenv("bucket") storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(blob_name.replace(f"gs://{bucket_name}/", "")) url = blob.generate_signed_url( version="v4", # This URL is valid for 15 minutes expiration=datetime.timedelta(minutes=15), # Allow GET requests using this URL. method="GET", ) return url class Model(LabelStudioMLBase): os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = get_credentials() image_processor = AutoImageProcessor.from_pretrained("diegokauer/conditional-detr-coe-int") model = AutoModelForObjectDetection.from_pretrained("diegokauer/conditional-detr-coe-int") def predict(self, tasks, **kwargs): """ This is where inference happens: model returns the list of predictions based on input list of tasks """ predictions = [] for task in tasks: url = task["data"]["image"] response = requests.get(generate_download_signed_url_v4(url)) print(response) image_data = BytesIO(response.content) image = Image.open(image_data) original_width, original_height = image.size with torch.no_grad(): inputs = self.image_processor(images=image, return_tensors="pt") outputs = self.model(**inputs) target_sizes = torch.tensor([image.size[::-1]]) results = self.image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] result_list = [] for score, label, box in zip(results['scores'], results['labels'], results['boxes']): label_id = str(uuid4())[:4] x, y, x2, y2 = tuple(box) result_list.append({ 'id': label_id, 'original_width': original_width, 'original_height': original_height, 'from_name': "label", 'to_name': "image", 'type': 'labels', 'score': score, # per-region score, visible in the editor 'value': { 'x': x, 'y': y, 'width': x2-x, 'height': y2-y, 'rotation': 0, 'labels': [self.id2label[label]] } }) predictions.append({ 'score': results['scores'].mean(), # prediction overall score, visible in the data manager columns 'model_version': 'diegokauer/conditional-detr-coe-int', # all predictions will be differentiated by model version 'result': result_list }) return predictions def fit(self, event, annotations, **kwargs): """ This is where training happens: train your model given list of annotations, then returns dict with created links and resources """ return {'path/to/created/model': 'my/model.bin'}