diegopacheco commited on
Commit
fc335fd
·
1 Parent(s): aa3efb4
Files changed (6) hide show
  1. README.md +13 -8
  2. app.py +37 -0
  3. install-deps.sh +3 -0
  4. requirements.txt +18 -0
  5. result.png +0 -0
  6. run.sh +3 -0
README.md CHANGED
@@ -1,13 +1,18 @@
1
  ---
2
- title: Diego Llm Chat DialoGPT
3
- emoji: 💻
4
- colorFrom: yellow
5
- colorTo: indigo
6
  sdk: gradio
7
- sdk_version: 4.29.0
 
 
 
 
8
  app_file: app.py
9
- pinned: false
10
- license: unlicense
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
1
  ---
2
+ title: Diego's LLM Chat
3
+ emoji: 🤖
 
 
4
  sdk: gradio
5
+ sdk_version: 4.24.0
6
+ license: cc-by-nc-sa-4.0
7
+ short_description: DialoGPT LLM model chat
8
+ colorFrom: red
9
+ colorTo: indigo
10
  app_file: app.py
 
 
11
  ---
12
 
13
+ ### Result
14
+ * LLM Chat
15
+ * Using LLM Model DialoGPT
16
+
17
+ <img src='result.png' />
18
+
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import gradio as gr
3
+
4
+ # Load DialoGPT model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
6
+ model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
7
+
8
+ def text_to_chat(initial_text, question):
9
+ # Concatenate the initial text and the question
10
+ text = initial_text + " " + question
11
+
12
+ # Encode the new user input, add the eos_token and return a tensor in Pytorch
13
+ new_user_input_ids = tokenizer.encode(text + tokenizer.eos_token, return_tensors='pt')
14
+
15
+ # Generate a response to the user input
16
+ bot_input_ids = model.generate(new_user_input_ids, max_length=1024, pad_token_id=tokenizer.eos_token_id, max_new_tokens=500)
17
+
18
+ # Decode the response and return it
19
+ chat_output = tokenizer.decode(bot_input_ids[:, new_user_input_ids.shape[-1]:][0], skip_special_tokens=True)
20
+
21
+ return chat_output
22
+
23
+ def chat_with_bot(initial_text, question):
24
+ result = text_to_chat(initial_text, question)
25
+ return result
26
+
27
+ ui = gr.Interface(fn=chat_with_bot,
28
+ inputs=["text", "text"],
29
+ outputs="text",
30
+ title="Diego's LLM Chat with DialoGPT",
31
+ examples=
32
+ [["","What is the capital of France?"],
33
+ ["A man walked into a bar.", "What happened next?"],
34
+ ["Acording to NoOne, The purpose of life is about the journey to learn and improve or just 42", "Acording to NoOne, what is the purpose of life?"]],
35
+ description="DialoGPT is a large-scale pretrained dialogue response generation model. It is based on the GPT-2 architecture with minor modifications to the training objective. The model is trained on multiple tasks, including conversational response generation, and can generate coherent and contextually relevant responses to user inputs.",
36
+ )
37
+ ui.launch()
install-deps.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ pip install -r requirements.txt
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ transformers
3
+ sentence-transformers
4
+ seaborn
5
+ torch
6
+ torchvision
7
+ matplotlib
8
+ pandas
9
+ scikit-learn
10
+ nltk
11
+ gensim
12
+ tensorflow
13
+ keras
14
+ opencv-python
15
+ fastapi
16
+ uvicorn
17
+ gradio
18
+ flask
result.png ADDED
run.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ python app.py