Spaces:
Sleeping
Sleeping
diegovelilla
commited on
Commit
•
b9c3ba7
1
Parent(s):
786c2e2
first upload of app.py
Browse files
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --- IMPORTS ---
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from datasets import Dataset
|
6 |
+
from transformers import Trainer, TrainingArguments, DataCollatorWithPadding
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import re
|
14 |
+
import nltk
|
15 |
+
from nltk.corpus import stopwords
|
16 |
+
nltk.download('stopwords')
|
17 |
+
stopwords = set(stopwords.words('english'))
|
18 |
+
|
19 |
+
# -------------------------
|
20 |
+
|
21 |
+
# --- USEFUL FUNCTIONS ----
|
22 |
+
|
23 |
+
|
24 |
+
def clean_text(text):
|
25 |
+
"""
|
26 |
+
This function get's rid of nonalphabetical characters, stopwords and lower cases the text.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
text (str): The text to be cleaned
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
text (str): The cleaned text
|
33 |
+
|
34 |
+
Example:
|
35 |
+
df['text'] = df['text'].apply(clean_text)
|
36 |
+
"""
|
37 |
+
text = re.sub(r'[^a-zA-Z]', ' ', text)
|
38 |
+
text = text.lower()
|
39 |
+
words = text.split()
|
40 |
+
text = [word for word in words if not word in stopwords]
|
41 |
+
text = ' '.join(words)
|
42 |
+
return text
|
43 |
+
|
44 |
+
|
45 |
+
def tokenize_function(dataframe):
|
46 |
+
"""
|
47 |
+
This function tokenizes the 'text' field of the dataframe.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
dataframe (pandas.DataFrame): The dataframe to be tokenized
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
dataframe (pandas.DataFrame): The tokenized dataframe
|
54 |
+
|
55 |
+
Example and output:
|
56 |
+
train_dataset_token = train_dataset.map(tokenize_function, batched=True)
|
57 |
+
"""
|
58 |
+
return tokenizer(dataframe["text"], truncation=True)
|
59 |
+
|
60 |
+
|
61 |
+
def compute_metrics(eval_pred):
|
62 |
+
"""
|
63 |
+
This function computes the accuracy, precision, recall and f1 score of the model.
|
64 |
+
|
65 |
+
It'is passed to the trainer and it outputs when evaluating the model.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
eval_pred (tuple): The predictions and labels of the model
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
dict: The accuracy, precision, recall and f1 score of the model
|
72 |
+
|
73 |
+
Example:
|
74 |
+
>>> trainer.evaluate()
|
75 |
+
{
|
76 |
+
'accuracy': accuracy,
|
77 |
+
'precision': precision,
|
78 |
+
'recall': recall,
|
79 |
+
'f1': f1
|
80 |
+
}
|
81 |
+
"""
|
82 |
+
predictions, labels = eval_pred
|
83 |
+
predictions = predictions.argmax(axis=-1)
|
84 |
+
accuracy = accuracy_score(labels, predictions)
|
85 |
+
precision, recall, f1, _ = precision_recall_fscore_support(
|
86 |
+
labels, predictions, average='binary')
|
87 |
+
return {
|
88 |
+
'accuracy': accuracy,
|
89 |
+
'precision': precision,
|
90 |
+
'recall': recall,
|
91 |
+
'f1': f1
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
def predict(essay):
|
96 |
+
"""
|
97 |
+
This function makes a prediction based on the text input.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
text (list): List of all essays to check.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
Prediction
|
104 |
+
|
105 |
+
"""
|
106 |
+
# --- DATA PREPROCESSING ---
|
107 |
+
|
108 |
+
# Now we convert the input to a dataset
|
109 |
+
df = pd.DataFrame({'text': [essay]})
|
110 |
+
|
111 |
+
# Get rid of nonalphatetical characters, stopwords and we lower case it.
|
112 |
+
df['text'] = df['text'].apply(clean_text)
|
113 |
+
|
114 |
+
# We convert the pandas dataframe into hugging face datasets and tokenize both of them
|
115 |
+
ds = Dataset.from_pandas(df)
|
116 |
+
ds_token = ds.map(tokenize_function, batched=True)
|
117 |
+
|
118 |
+
# Drop columns that are not necessary and set the dataset format to pytorch tensors
|
119 |
+
ds_token = ds_token.remove_columns(["text", "token_type_ids"])
|
120 |
+
ds_token.set_format(type='torch', columns=['input_ids', 'attention_mask'])
|
121 |
+
|
122 |
+
# -------------------------
|
123 |
+
|
124 |
+
# --- INSTANTIATING TRAINER ----
|
125 |
+
|
126 |
+
# We instantiate a DataCollatorWithPadding in order to pad the inputs in batches while training
|
127 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
128 |
+
|
129 |
+
# Create the training arguments
|
130 |
+
training_args = TrainingArguments(".")
|
131 |
+
|
132 |
+
# Create the trainer
|
133 |
+
trainer = Trainer(
|
134 |
+
model,
|
135 |
+
training_args,
|
136 |
+
eval_dataset=ds_token,
|
137 |
+
data_collator=data_collator,
|
138 |
+
tokenizer=tokenizer,
|
139 |
+
compute_metrics=compute_metrics
|
140 |
+
)
|
141 |
+
|
142 |
+
# -------------------------
|
143 |
+
|
144 |
+
# --- PREDICT ---
|
145 |
+
|
146 |
+
# We predict and then format the output
|
147 |
+
|
148 |
+
predictions = trainer.predict(ds_token)
|
149 |
+
predictions = torch.from_numpy(predictions.predictions)
|
150 |
+
predictions = torch.nn.functional.softmax(predictions, dim=-1)
|
151 |
+
results = []
|
152 |
+
index = torch.argmax(predictions[0])
|
153 |
+
confidence = round(predictions[0][index].item() * 100, 2)
|
154 |
+
label = "HUMAN" if index == 0 else "AI"
|
155 |
+
results.append(f'{label} with {confidence}% confidence.')
|
156 |
+
|
157 |
+
return "\n".join(results)
|
158 |
+
# -------------------------
|
159 |
+
|
160 |
+
# -------------------------
|
161 |
+
|
162 |
+
# --- LOADING THE MODEL ---
|
163 |
+
|
164 |
+
|
165 |
+
# Load the initial tokenizer and model to set the number of labels its going to classify as 2
|
166 |
+
checkpoint = "diegovelilla/EssAI"
|
167 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
168 |
+
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
|
169 |
+
|
170 |
+
# -------------------------
|
171 |
+
|
172 |
+
iface = gr.Interface(
|
173 |
+
fn=predict,
|
174 |
+
inputs=gr.Textbox(
|
175 |
+
lines=2, placeholder="Enter your essay here...", label="Your essay"),
|
176 |
+
outputs=gr.Textbox(label="Prediction Result"),
|
177 |
+
title="EssAI",
|
178 |
+
description="Detect AI-generated essays in a few seconds."
|
179 |
+
)
|
180 |
+
|
181 |
+
# Launch the app
|
182 |
+
if __name__ == "__main__":
|
183 |
+
iface.launch()
|