File size: 8,745 Bytes
1ee3bf0
9d6837d
c644570
1ee3bf0
c644570
c4e3a54
1ee3bf0
 
33469f8
5d133e3
1ee3bf0
 
 
 
 
 
 
 
 
33469f8
cad6ebe
 
a750c0e
c4e3a54
 
a750c0e
c4e3a54
a750c0e
c4e3a54
 
a750c0e
6e5a323
3c77757
9d6837d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
9d6837d
 
 
 
 
 
 
 
 
 
 
 
 
3c77757
9d6837d
1ee3bf0
 
 
33469f8
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee3bf0
 
33469f8
1ee3bf0
 
33469f8
1ee3bf0
9d6837d
33469f8
 
 
 
 
 
 
 
 
3e48ac3
33469f8
 
 
 
3c77757
1ee3bf0
9d6837d
33469f8
 
 
 
1ee3bf0
 
b2c85ec
 
33469f8
1ee3bf0
33469f8
737d099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
1ee3bf0
b521f67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import numpy as np
import torch

from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
import diffusers
from share_btn import community_icon_html, loading_icon_html, share_js

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
    if negative_prompt == "":
        negative_prompt = None
    scheduler_class_name = scheduler.split("-")[0]

    add_kwargs = {}
    if len(scheduler.split("-")) > 1:
        add_kwargs["use_karras"] = True
    if len(scheduler.split("-")) > 2:
        add_kwargs["algorithm_type"] = "sde-dpmsolver++"

    scheduler = getattr(diffusers, scheduler_class_name)
    pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
    
    init_image = dict["image"].convert("RGB")
    mask = dict["mask"].convert("RGB")
    original_height, original_width, original_channel = np.array(init_image).shape

    # Limited to 1 million pixels
    if 1024 * 1024 < original_width * original_height:
        factor = ((1024 * 1024) / (original_width * original_height))**0.5
        process_width = math.floor(original_width * factor)
        process_height = math.floor(original_height * factor)
    else:
        process_width = original_width
        process_height = original_height

    # Width and height must be multiple of 8
    if (process_width % 8) != 0 or (process_height % 8) != 0:
        process_width = process_width - (process_width % 8)
        process_height = process_height - (process_height % 8)

        if ((process_width + 8) * (process_height + 8)) <= (1024 * 1024):
            process_width = process_width + 8
            process_height = process_height + 8

    init_image = init_image.resize((process_width, process_height))
    mask = mask.resize((process_width, process_height))
    
    output = pipe(
        prompt = prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        mask_image=mask,
        guidance_scale=guidance_scale,
        num_inference_steps=int(steps),
        strength=strength,
        width = process_width,
        height = process_height
    )

    output_image = output.images[0].resize((original_width, original_height))
    
    return output_image, gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload")
                    with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Inpaint!", elem_id="run_button")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
                            steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
                            strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
                            negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
                            scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img")
                    with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
                        community_icon = gr.HTML(community_icon_html)
                        loading_icon = gr.HTML(loading_icon_html)
                        share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
            

    btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run')
    prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container])
    share_button.click(None, [], [], _js=share_js)

    gr.Examples(
                examples=[
                    ["./imgs/aaa (8).png"],
                    ["./imgs/download (1).jpeg"],
                    ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
                    ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
                    ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
                    ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
                    ["./imgs/canam-electric-motorcycles-scaled.jpg"],
                    ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
                    ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
                    ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
                ],
                fn=predict,
                inputs=[image],
                cache_examples=False,
    )
    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)