Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
import torch | |
from diffusers import AutoPipelineForInpainting, UNet2DConditionModel | |
import diffusers | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
unet = UNet2DConditionModel.from_pretrained("valhalla/sdxl-inpaint-ema", torch_dtype=torch.float16, revision="d5593e75323fa2a5285ebe02c1aba504a695bbf7") # 50k | |
pipe = AutoPipelineForInpainting.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
def read_content(file_path: str) -> str: | |
"""read the content of target file | |
""" | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
def predict(dict, prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"): | |
scheduler_class_name = scheduler.split("-")[0] | |
add_kwargs = {} | |
if len(scheduler.split("-")) > 1: | |
add_kwargs["use_karras"] = True | |
if len(scheduler.split("-")) > 2: | |
add_kwargs["algorithm_type"] = "sde-dpmsolver++" | |
scheduler = getattr(diffusers, scheduler_class_name) | |
pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs) | |
init_image = dict["image"].convert("RGB").resize((1024, 1024)) | |
mask = dict["mask"].convert("RGB").resize((1024, 1024)) | |
output = pipe(prompt = prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength) | |
return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
css = ''' | |
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem} | |
#image_upload{min-height:400px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
#mask_radio .gr-form{background:transparent; border: none} | |
#word_mask{margin-top: .75em !important} | |
#word_mask textarea:disabled{opacity: 0.3} | |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
.dark .footer {border-color: #303030} | |
.dark .footer>p {background: #0b0f19} | |
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
#image_upload .touch-none{display: flex} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
} | |
#share-btn { | |
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
''' | |
image_blocks = gr.Blocks(css=css) | |
with image_blocks as demo: | |
gr.HTML(read_content("header.html")) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload").style(height=400) | |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): | |
prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text") | |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): | |
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale") | |
steps = gr.Number(value=20, minimum=10, maximum=50, step=0.1, label="steps") | |
strength = gr.Number(value=1.0, minimum=0.0, maximum=1.0, step=0.05, label="strength") | |
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): | |
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"] | |
scheduler = gr.Dropdown(choices=schedulers, value="EulerDiscreteScheduler") | |
btn = gr.Button("Inpaint!").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
full_width=False, | |
) | |
with gr.Column(): | |
image_out = gr.Image(label="Output", elem_id="output-img").style(height=400) | |
with gr.Group(elem_id="share-btn-container"): | |
community_icon = gr.HTML(community_icon_html, visible=False) | |
loading_icon = gr.HTML(loading_icon_html, visible=False) | |
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) | |
btn.click(fn=predict, inputs=[image, prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, community_icon, loading_icon, share_button]) | |
share_button.click(None, [], [], _js=share_js) | |
gr.Examples( | |
examples=[ | |
["./imgs/aaa (8).png"], | |
["./imgs/download (1).jpeg"], | |
["./imgs/0_oE0mLhfhtS_3Nfm2.png"], | |
["./imgs/02_HubertyBlog-1-1024x1024.jpg"], | |
["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"], | |
["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"], | |
["./imgs/canam-electric-motorcycles-scaled.jpg"], | |
["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"], | |
["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"], | |
["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"], | |
], | |
fn=predict, | |
inputs=[image], | |
cache_examples=False, | |
) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face | |
</p> | |
</div> | |
""" | |
) | |
image_blocks.launch() | |