import gradio as gr import requests import io import random import os from PIL import Image from deep_translator import GoogleTranslator from langdetect import detect import cv2 import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer os.system("pip freeze") # download weights if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") if not os.path.exists('GFPGANv1.2.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") if not os.path.exists('GFPGANv1.3.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('RestoreFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") if not os.path.exists('CodeFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .") # background enhancer with RealESRGAN model_us = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_us_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_us_path=model_us_path, model_us=model_us, tile=0, tile_pad=10, pre_pad=0, half=half) os.makedirs('output', exist_ok=True) API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" API_TOKEN = os.getenv("HF_READ_TOKEN") # it is free headers = {"Authorization": f"Bearer {API_TOKEN}"} models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL LoRA", "epiCRealism", "PixelArt XL", "NewReality XL"] def query(prompt, model, is_negative=False, steps=20, cfg_scale=7, seed=None): language = detect(prompt) if language == 'ru': prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'\033[1mГенерация:\033[0m {prompt}') if model == 'DALL-E 3 XL': API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" if model == 'Playground 2': API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" if model == 'Openjourney 4': API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4" if model == 'AbsoluteReality 1.8.1': API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1" if model == 'Lyriel 1.6': API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16" if model == 'Animagine XL 2.0': API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0" if model == 'Counterfeit 2.5': API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5" if model == 'Realistic Vision 5.1': API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51" if model == 'Incursios 1.6': API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6" if model == 'Anime Detailer XL LoRA': API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora" if model == 'epiCRealism': API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism" if model == 'PixelArt XL': API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" if model == 'NewReality XL': API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw" payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed is not None else random.randint(-1, 2147483647) } image_bytes = requests.post(API_URL, headers=headers, json=payload).content image = Image.open(io.BytesIO(image_bytes)) return image def up(img, version, scale, weight): weight /= 100 print(img, version, scale, weight) try: extension = os.path.splitext(os.path.basename(str(img)))[1] img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: # for gray inputs img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None if version == 'v1.2': face_enhancer = GFPGANer( model_us_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif version == 'v1.3': face_enhancer = GFPGANer( model_us_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif version == 'v1.4': face_enhancer = GFPGANer( model_us_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif version == 'RestoreFormer': face_enhancer = GFPGANer( model_us_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) elif version == 'CodeFormer': face_enhancer = GFPGANer( model_us_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler) try: _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) except RuntimeError as error: print('Error', error) try: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = img.shape[0:2] output = cv2.resize(output, (int(w * scale), int(h * scale)), interpolation=interpolation) except Exception as error: print('wrong scale input.', error) if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' save_path = f'output/out.{extension}' cv2.imwrite(save_path, output) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) return output except Exception as error: print('global exception', error) return None css = """ footer {visibility: hidden !important;} """ with gr.Blocks(css=css) as dalle: with gr.Tab("Базовые настройки"): with gr.Row(): with gr.Column(elem_id="prompt-container"): text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input") model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list) with gr.Tab("Расширенные настройки"): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") with gr.Tab("Настройки апскейлинга"): up_1 = gr.Radio(choices=['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], value='v1.4', label='Версия'), up_2 = gr.Slider(label="Коэффициент масштабирования", value=2, minimum=2, maximum=6), up_3 = gr.Slider(0, 100, label='Weight, только для CodeFormer. 0 для лучшего качества, 100 для лучшей идентичности', value=50) with gr.Row(): text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") with gr.Row(): image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery") with gr.Row(): up_button = gr.Button("Улучшить изображение", variant='primary', elem_id="gen-button") with gr.Row(): up_output = gr.Image(type="pil", label="Улучшенное изображение", elem_id="gallery"), text_button.click(query, inputs=[text_prompt, model, negative_prompt], outputs=image_output) up_button.click(up, inputs=[image_output, up_1, up_2, up_3], outputs=up_output) dalle.launch(show_api=False)