import gradio as gr from fastai.vision.all import * def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Cat or Dog Classifier" # description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." # article="

Blog post

" # examples = ['siamese.jpg'] interpretation = 'default' enable_queue = True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, # description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()