Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,450 Bytes
084ab29 823d579 084ab29 823d579 084ab29 55c9d69 a5555ed 084ab29 823d579 a5555ed 823d579 084ab29 823d579 084ab29 823d579 084ab29 823d579 084ab29 a4ac72c 823d579 084ab29 823d579 6a23860 823d579 f286cb8 823d579 a5555ed 823d579 084ab29 823d579 084ab29 823d579 a4ac72c 084ab29 a4ac72c 823d579 a4ac72c 823d579 a4ac72c 823d579 a4ac72c 823d579 a4ac72c 084ab29 a4ac72c 084ab29 a5555ed 823d579 a5555ed 823d579 084ab29 a4ac72c 084ab29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
import os
import imageio
import numpy as np
from einops import rearrange
from demo.img_gen import img_gen
from demo.mesh_recon import mesh_reconstruction
from demo.relighting_gen import relighting_gen
from demo.render_hints import render_hint_images_btn_func
from demo.rm_bg import rm_bg
with gr.Blocks(title="DiLightNet Demo") as demo:
gr.Markdown("""# DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
## A demo for generating images under point/environmantal lighting using DiLightNet. For full usage (video generation & arbitary lighting condition & depth-conditioned generation) and more examples, please refer to our [GitHub repository](https://github.com/iamNCJ/DiLightNet)""")
with gr.Row():
# 1. Reference Image Input / Generation
with gr.Column(variant="panel"):
gr.Markdown("## Step 1. Input or Generate Reference Image")
input_image = gr.Image(height=512, width=512, label="Input Image", interactive=True)
with gr.Accordion("Generate Image", open=False):
with gr.Group():
prompt = gr.Textbox(value="", label="Prompt", lines=3, placeholder="Input prompt here")
with gr.Row():
seed = gr.Number(value=42, label="Seed", interactive=True)
steps = gr.Number(value=20, label="Steps", interactive=True)
cfg = gr.Number(value=7.5, label="CFG", interactive=True)
down_from_768 = gr.Checkbox(label="Downsample from 768", value=True)
with gr.Row():
generate_btn = gr.Button(value="Generate")
generate_btn.click(fn=img_gen, inputs=[prompt, seed, steps, cfg, down_from_768], outputs=[input_image])
gr.Examples(
examples=[os.path.join("examples/provisional_img", i) for i in os.listdir("examples/provisional_img")],
inputs=[input_image],
examples_per_page=8,
)
# 2. Background Removal
with gr.Column(variant="panel"):
gr.Markdown("## Step 2. Remove Background")
with gr.Tab("Masked Image"):
masked_image = gr.Image(height=512, width=512, label="Masked Image", interactive=True)
with gr.Tab("Mask"):
mask = gr.Image(height=512, width=512, label="Mask", interactive=False)
use_sam = gr.Checkbox(label="Use SAM for Refinement", value=False)
rm_bg_btn = gr.Button(value="Remove Background")
rm_bg_btn.click(fn=rm_bg, inputs=[input_image, use_sam], outputs=[masked_image, mask])
# 3. Depth Estimation & Mesh Reconstruction
with gr.Column(variant="panel"):
gr.Markdown("## Step 3. Depth Estimation & Mesh Reconstruction")
mesh = gr.Model3D(label="Mesh Reconstruction", clear_color=(1.0, 1.0, 1.0, 1.0), interactive=True)
with gr.Column():
with gr.Accordion("Options", open=False):
with gr.Group():
remove_edges = gr.Checkbox(label="Remove Occlusion Edges", value=False)
fov = gr.Number(value=55., label="FOV", interactive=False)
mask_threshold = gr.Slider(value=25., label="Mask Threshold", minimum=0., maximum=255., step=1.)
depth_estimation_btn = gr.Button(value="Estimate Depth")
def mesh_reconstruction_wrapper(image, mask, remove_edges, mask_threshold,
progress=gr.Progress(track_tqdm=True)):
return mesh_reconstruction(image, mask, remove_edges, None, mask_threshold)
depth_estimation_btn.click(
fn=mesh_reconstruction_wrapper,
inputs=[input_image, mask, remove_edges, mask_threshold],
outputs=[mesh, fov],
)
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("## Step 4. Render Hints")
hint_image = gr.Image(label="Hint Image", height=512, width=512)
res_folder_path = gr.Textbox("", visible=False)
is_env_lighting = gr.Checkbox(label="Use Environmental Lighting", value=True, interactive=False, visible=False)
with gr.Tab("Environmental Lighting"):
env_map_preview = gr.Image(label="Environment Map Preview", height=256, width=512, interactive=False, show_download_button=False)
env_map_path = gr.Text(interactive=False, visible=False, value="examples/env_map/grace.exr")
env_rotation = gr.Slider(value=0., label="Environment Rotation", minimum=0., maximum=360., step=0.5)
env_examples = gr.Examples(
examples=[[os.path.join("examples/env_map_preview", i), os.path.join("examples/env_map", i).replace("png", "exr")] for i in os.listdir("examples/env_map_preview")],
inputs=[env_map_preview, env_map_path],
examples_per_page=20,
)
render_btn_env = gr.Button(value="Render Hints")
def render_wrapper_env(mesh, fov, env_map_path, env_rotation, progress=gr.Progress(track_tqdm=True)):
env_map_path = os.path.abspath(env_map_path)
res_path = render_hint_images_btn_func(mesh, float(fov), [(0, 0, 0)], env_map=env_map_path, env_start_azi=env_rotation / 360.)
hint_files = [res_path + '/hint00' + mat for mat in ["_diffuse.png", "_ggx0.05.png", "_ggx0.13.png", "_ggx0.34.png"]]
hints = []
for hint_file in hint_files:
hint = imageio.v3.imread(hint_file)
hints.append(hint)
hints = rearrange(np.stack(hints), '(n1 n2) h w c -> (n1 h) (n2 w) c', n1=2, n2=2)
return hints, res_path, True
render_btn_env.click(
fn=render_wrapper_env,
inputs=[mesh, fov, env_map_path, env_rotation],
outputs=[hint_image, res_folder_path, is_env_lighting]
)
with gr.Tab("Point Lighting"):
pl_pos_x = gr.Slider(value=3., label="Point Light X", minimum=-5., maximum=5., step=0.01)
pl_pos_y = gr.Slider(value=1., label="Point Light Y", minimum=-5., maximum=5., step=0.01)
pl_pos_z = gr.Slider(value=3., label="Point Light Z", minimum=-5., maximum=5., step=0.01)
power = gr.Slider(value=1000., label="Point Light Power", minimum=0., maximum=2000., step=1.)
render_btn_pl = gr.Button(value="Render Hints")
def render_wrapper_pl(mesh, fov, pl_pos_x, pl_pos_y, pl_pos_z, power,
progress=gr.Progress(track_tqdm=True)):
res_path = render_hint_images_btn_func(mesh, float(fov), [(pl_pos_x, pl_pos_y, pl_pos_z)], power)
hint_files = [res_path + '/hint00' + mat for mat in ["_diffuse.png", "_ggx0.05.png", "_ggx0.13.png", "_ggx0.34.png"]]
hints = []
for hint_file in hint_files:
hint = imageio.v3.imread(hint_file)
hints.append(hint)
hints = rearrange(np.stack(hints), '(n1 n2) h w c -> (n1 h) (n2 w) c', n1=2, n2=2)
return hints, res_path, False
render_btn_pl.click(
fn=render_wrapper_pl,
inputs=[mesh, fov, pl_pos_x, pl_pos_y, pl_pos_z, power],
outputs=[hint_image, res_folder_path, is_env_lighting]
)
with gr.Column(variant="panel"):
gr.Markdown("## Step 5. Control Lighting!")
res_image = gr.Image(label="Result Image", height=512, width=512)
with gr.Group():
relighting_prompt = gr.Textbox(value="", label="Appearance Text Prompt", lines=3,
placeholder="Input prompt here",
interactive=True)
# several example prompts
with gr.Row():
metallic_prompt_btn = gr.Button(value="Metallic", size="sm")
specular_prompt_btn = gr.Button(value="Specular", size="sm")
very_specular_prompt_btn = gr.Button(value="Very Specular", size="sm")
metallic_prompt_btn.click(fn=lambda x: x + " metallic", inputs=[relighting_prompt], outputs=[relighting_prompt])
specular_prompt_btn.click(fn=lambda x: x + " specular", inputs=[relighting_prompt], outputs=[relighting_prompt])
very_specular_prompt_btn.click(fn=lambda x: x + " very specular", inputs=[relighting_prompt], outputs=[relighting_prompt])
with gr.Row():
clear_prompt_btn = gr.Button(value="Clear")
reuse_btn = gr.Button(value="Reuse Provisional Image Generation Prompt")
clear_prompt_btn.click(fn=lambda x: "", inputs=[relighting_prompt], outputs=[relighting_prompt])
reuse_btn.click(fn=lambda x: x, inputs=[prompt], outputs=[relighting_prompt])
with gr.Accordion("Options", open=False):
relighting_seed = gr.Number(value=3407, label="Seed", interactive=True)
relighting_steps = gr.Number(value=20, label="Steps", interactive=True)
relighting_cfg = gr.Number(value=3.0, label="CFG", interactive=True)
relighting_generate_btn = gr.Button(value="Generate")
def gen_relighting_image(masked_image, mask, res_folder_path, relighting_prompt, relighting_seed,
relighting_steps, relighting_cfg, do_env_inpainting,
progress=gr.Progress(track_tqdm=True)):
relighting_gen(
masked_ref_img=masked_image,
mask=mask,
cond_path=res_folder_path,
frames=1,
prompt=relighting_prompt,
steps=int(relighting_steps),
seed=int(relighting_seed),
cfg=relighting_cfg
)
relit_img = imageio.v3.imread(res_folder_path + '/relighting00_0.png')
if do_env_inpainting:
bg = imageio.v3.imread(res_folder_path + f'/bg00.png') / 255.
else:
bg = np.zeros_like(relit_img)
relit_img = relit_img / 255.
mask_for_bg = imageio.v3.imread(res_folder_path + '/hint00_diffuse.png')[..., -1:] / 255.
relit_img = relit_img * mask_for_bg + bg * (1. - mask_for_bg)
relit_img = (relit_img * 255).clip(0, 255).astype(np.uint8)
return relit_img
relighting_generate_btn.click(fn=gen_relighting_image,
inputs=[masked_image, mask, res_folder_path, relighting_prompt, relighting_seed,
relighting_steps, relighting_cfg, is_env_lighting],
outputs=[res_image])
if __name__ == '__main__':
demo.queue().launch(server_name="0.0.0.0", share=True)
|