File size: 9,477 Bytes
b578b56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import poker_functions as p
from fractions import Fraction
from collections import Counter


class Player:
    def __init__(self, number, cards=[]):
        if len(cards) > 0:
            cards = p.make_card(cards)
        else:
            cards = []
        self.number = number
        self.cards = cards
        self.hand = None
        self.starting_cards = None
        self.wins = 0

    def __str__(self):
        return "player_" + str(self.number)

def dedup(board):
    duplicate = False
    c = Counter(board)
    for card in board:
        if c[card] > 1:
            duplicate = True
            return duplicate
    return duplicate


def validate_card(check):
    """Detect invalid cards in a passed collection"""
    valid = True
    deck = p.generate_deck()
    valid_cards = [card.name for card in deck]
    for card in check:
        if card not in valid_cards:
            valid = False
            return valid
    return valid


def convert_and_update(deck, cards):
    if len(cards) == 0:
        return deck, cards
    else:
        cards = p.make_card(cards)
        for card in cards:
            deck.update_deck(card)
        return deck, cards

#####     SIMULATIONS     #####
def evaluate_hand(hole_cards, flop=[], turn=[], river=[]):
    board = flop + turn + river
    hand = None
    if len(hole_cards + board) < 5:
        return hand
    else:
        for func in p.HAND_REGISTRY:
            func = func(hole_cards, board)
            if not func:
                continue
            else:
                return func


def score_game(contestants):
    #  TODO make this more elegant by functionizing repeated code.
    """Application will determine the highest hand, including low and kicker for each player in player_list"""
    high = ['flush', 'straight', 'straight_flush']
    kick = ['4ok']
    hi_lo = ['boat']
    hi_lo_kick = ['2pair', 'hc', '3ok', 'pair']
    high_hand = max(contestants, key=lambda x: x.hand.hand_value)  # contestant with highest hand
    same_high_hand = [player for player in contestants if player.hand.hand_value == high_hand.hand.hand_value]
    if len(same_high_hand) == 1:
        same_high_hand[0].wins += 1
        return contestants
    elif high_hand.hand.type in high:
        high_card = max(same_high_hand, key=lambda x: x.hand.high_value)
        same_high_card = [player for player in same_high_hand if player.hand.high_value == high_card.hand.high_value]
        if len(same_high_card) == 1:
            high_card.wins += 1
            return contestants
        else:
            return contestants
    elif high_hand.hand.type in hi_lo:
        over = max(same_high_hand, key=lambda x: x.hand.high_value) # Highest pair in hand
        same_over = [player for player in same_high_hand if player.hand.high_value == over.hand.high_value]
        if len(same_over) == 1:
            over.wins += 1
            return contestants
        else:
            under = max(same_over, key=lambda x: x.hand.low_value) # lowest pair in hand
            same_under = [player for player in same_over if player.hand.low_value == under.hand.low_value]
            if len(same_under) == 1:
                under.wins += 1
                return contestants
            else:
                return contestants
    elif high_hand.hand.type in hi_lo_kick:
        over = max(same_high_hand, key=lambda x: x.hand.high_value)  # Highest pair in hand
        same_over = [player for player in same_high_hand if player.hand.high_value == over.hand.high_value]
        if len(same_over) == 1:
            over.wins += 1
            return contestants
        else:
            under = max(same_over, key=lambda x: x.hand.low_value)  # lowest pair in hand
            same_under = [player for player in same_over if player.hand.low_value == under.hand.low_value]
            if len(same_under) == 1:
                under.wins += 1
                return contestants
            else:
                kicker = max(same_under, key=lambda x: x.hand.kicker)
                same_kicker = [player for player in same_under if player.hand.kicker == kicker.hand.kicker]
                if len(same_kicker) == 1:
                    kicker.wins += 1
                    return contestants
                else:
                    return contestants
    elif high_hand.hand.type in kick:
        low_val = max(same_high_hand, key=lambda x: x.hand.low_value)
        same_low_val = [player for player in same_high_hand if player.hand.low_value == low_val.hand.low_value]
        if len(same_low_val) == 1:
            low_val.wins += 1
            return contestants
        else:
            return contestants


def simulation_one_player(hole, flop=None, turn=None, river=None, sims=100000):
    if flop is None:
        flop = []
    if turn is None:
        turn = []
    if river is None:
        river = []
    full_board = 7 # number of cards required to run sim
    passed_cards = len(hole) + len(flop) + len(turn) + len(river)
    passed_flop = list(flop)
    high_cards = 0
    pairs = 0
    two_pairs = 0
    trips = 0
    straights = 0
    flushes = 0
    boats = 0
    quads = 0
    straight_flushes = 0
    invalid = 0
    for i in range(sims):
        deck = p.generate_deck()
        deck, hole = convert_and_update(deck, hole)
        deck, flop = convert_and_update(deck, flop)
        deck, turn = convert_and_update(deck, turn)
        deck, river = convert_and_update(deck, river)
        j = full_board - passed_cards
        for _ in range(j):
            deal, deck = deck.deal_card()
            flop.append(deal)  # Adding to flop because it shouldn't matter, will revert flop back at end of loop
        hand = evaluate_hand(hole, flop, turn, river)
        if hand.type == '2pair':
            two_pairs += 1
        elif hand.type == '3ok':
            trips += 1
        elif hand.type == '4ok':
            quads += 1
        elif hand.type == 'boat':
            boats += 1
        elif hand.type == 'flush':
            flushes += 1
        elif hand.type == 'hc':
            high_cards += 1
        elif hand.type == 'pair':
            pairs += 1
        elif hand.type == 'straight':
            straights += 1
        elif hand.type == 'straight_flush':
            straight_flushes += 1
        else:
            invalid += 1
        i += 1
        flop = list(passed_flop)
    return sims, high_cards, pairs, two_pairs, trips, straights, flushes, boats, quads, straight_flushes


def simulation_multiplayer(hole_one, hole_two=[], hole_three=[], hole_four=[], hole_five=[], hole_six=[],
                           flop = [], turn = [], river = [], opponents=2, sims=10000):
    contestant_hands = [hole_one, hole_two, hole_three, hole_four, hole_five, hole_six]
    contestants = []
    flop = p.make_card(flop)
    turn = p.make_card(turn)
    river = p.make_card(river)
    passed_flop_stable = [card for card in flop]
    for n in range(opponents):
        player_name = 'opponent' + str(n+1)
        player_name = Player(n, contestant_hands[n])
        contestants.append(player_name)
    i = 0
    passed_board = len(flop) + len(turn) + len(river)
    full_board = 5
    k = full_board - passed_board
    for i in range(sims):
        deck = p.generate_deck()
        for contestant in contestants:  # TODO move assigning Player.starting_cards to init
            if len(contestant.cards) == 2:
                contestant.starting_cards = True
                for card in contestant.cards:
                    deck.update_deck(card)  # remove known hole cards from deck
            else:
                contestant.starting_cards = False
                hole_cards = []
                for j in range(2):
                    deal, deck = deck.deal_card()
                    hole_cards.append(deal)
                contestant.cards = hole_cards #  assign new hole cards if not passed
        for l in range(k):  # complete the board as needed
            deal, deck = deck.deal_card()
            flop.append(deal)
        for contestant in contestants:
            hand = evaluate_hand(contestant.cards, flop, turn, river)
            contestant.hand = hand
        #  Compare hand values in contestants
        contestants = score_game(contestants)
        i += 1
        #  Revert to starting state
        flop = [card for card in passed_flop_stable]
        for contestant in contestants:
            if contestant.starting_cards is False:
                contestant.cards = []
        hole_cards = []
    return contestants



#  TODO for single and mult: find and return most likely hand.  Return number of outs and odds.

#####     MATH     #####
def percent(hits, sims):
    percent = round((hits / sims) * 100,0)
    return percent

def ratio(hits, sims):
    """Return a ratio (e.g. 3:5) for two input numbers"""
    percent = round((hits / sims),2)
    fraction = str(Fraction(percent).limit_denominator())
    fraction = fraction.replace('/', ':')
    return fraction


#####     REFERENCE     #####
outs = {'1':('46:1','45:1',"22:1"),
        '2':('22:1','22:1','11:1'),
        '3':('15:1', '14:1', '7:1'),
        '4':('11:1','10:1','5:1'),
        '5':('8.5:1', '8:1','4:1'),
        '6':('7:1','7:1','3:1'),
        '7':('6:1','6:1','2.5:1'),
        '8':('5:1','5:1','2.5:1'),
        '9':('4:1','4:1','2:1'),
        '10':('3.5:1','3.5:1','1.5:1'),
        '11':('3.3:1','3.2:1','1.5:1'),
        '12':('3:1','3:1','1.2:1'),
        }


rank_value = p.rank_value