File size: 4,875 Bytes
83cfe1a
 
 
 
 
 
c1db6c9
83cfe1a
 
 
 
 
 
 
 
 
 
 
34b429d
 
83cfe1a
 
24153b3
 
83cfe1a
b741e69
 
83cfe1a
 
 
 
24153b3
b741e69
 
 
 
24153b3
 
 
 
 
 
 
 
 
 
 
b741e69
83cfe1a
b741e69
 
83cfe1a
 
 
 
 
 
b741e69
 
 
 
 
 
 
 
 
 
 
 
83cfe1a
 
 
b741e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83cfe1a
 
 
 
 
b741e69
83cfe1a
c1db6c9
 
 
 
83cfe1a
 
24153b3
 
83cfe1a
c1db6c9
 
 
 
83cfe1a
c1db6c9
 
 
 
 
b741e69
 
 
 
 
c1db6c9
 
83cfe1a
 
 
 
 
 
 
 
 
 
 
 
c1db6c9
83cfe1a
24153b3
83cfe1a
 
b741e69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import requests
from bs4 import BeautifulSoup
import openai
import gradio as gr
import os
from dotenv import load_dotenv
import time

# Load environment variables
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")

# Supported languages and their codes
LANGUAGES = {
    "English": "en",
    "Hindi": "hi",
    "Telugu": "te",
    "Kannada": "kn",
    "Malayalam": "ml",
    "Tamil": "ta"
}

# Function to scrape and summarize content from a URL
def scrape_and_summarize(url):
    try:
        response = requests.get(url, timeout=10)  # Set timeout to 10 seconds
        response.raise_for_status()
        soup = BeautifulSoup(response.content, 'html.parser')
        title = soup.find('title').get_text() if soup.find('title') else "No Title"
        paragraphs = soup.find_all('p')
        content = '\n'.join([para.get_text() for para in paragraphs])
        
        # Truncate content if too large for API
        if len(content) > 2000:
            content = content[:2000] + "..."
        
        # Summarize the content using OpenAI
        prompt = f"Summarize the following content:\n\n{content}"
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are an expert summarizer."},
                {"role": "user", "content": prompt}
            ]
        )
        summary = response.choices[0].message.content.strip()
        return title, summary
    except requests.exceptions.RequestException as e:
        return "Error", f"Failed to scrape content from {url}: {str(e)}"
    except Exception as e:
        return "Error", f"Failed to summarize content from {url}: {str(e)}"

# Function to translate content using OpenAI
def translate_content(content, target_language):
    if target_language == "en":
        return content  # No translation needed
    
    try:
        prompt = f"Translate the following content to {target_language}:\n\n{content}"
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are a multilingual translator."},
                {"role": "user", "content": prompt}
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"Translation failed: {str(e)}"

# Function to create newsletter
def create_newsletter(contents, language):
    try:
        prompt = "Create a newsletter with the following content:\n\n"
        for title, summary, url in contents:
            translated_summary = translate_content(summary, LANGUAGES[language])
            prompt += f"Title: {title}\nURL: {url}\n\n{translated_summary}\n\n"
        
        response = openai.chat.completions.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are a helpful assistant expert in making newsletters."},
                {"role": "user", "content": prompt}
            ]
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        return f"Failed to create newsletter: {str(e)}"

# Function to process URLs and generate newsletter
def process_urls(url1, url2, url3, url4, url5, language):
    urls = [url for url in [url1, url2, url3, url4, url5] if url]
    if not urls:
        return "No URLs provided.", None
    
    with gr.update() as progress:
        progress(0.2)
        time.sleep(1)
    
    contents = []
    for url in urls:
        title, summary = scrape_and_summarize(url)
        contents.append((title, summary, url))
    
    with gr.update() as progress:
        progress(0.6)
        time.sleep(1)
    
    newsletter = create_newsletter(contents, language)
    with gr.update() as progress:
        progress(1.0)
        time.sleep(1)
    
    file_path = "newsletter.txt"
    try:
        with open(file_path, "w", encoding="utf-8") as file:
            file.write(newsletter)
    except Exception as e:
        return f"Failed to save newsletter: {str(e)}", None
    
    return newsletter, file_path

# Gradio interface
iface = gr.Interface(
    fn=process_urls,
    inputs=[
        gr.Textbox(label="URL 1"),
        gr.Textbox(label="URL 2"),
        gr.Textbox(label="URL 3"),
        gr.Textbox(label="URL 4"),
        gr.Textbox(label="URL 5"),
        gr.Dropdown(choices=list(LANGUAGES.keys()), label="Select Language", value="English")
    ],
    outputs=["html", gr.File(label="Download Newsletter")],
    title="Multilingual AI Newsletter Generator",
    description="Enter up to 5 URLs to generate a summarized newsletter in your preferred language. Copy and paste the output into your CMS tool for further editing. A progress indicator will show the process, and you can download the newsletter as a text file."
)

iface.launch()