Spaces:
Sleeping
Sleeping
File size: 4,875 Bytes
83cfe1a c1db6c9 83cfe1a 34b429d 83cfe1a 24153b3 83cfe1a b741e69 83cfe1a 24153b3 b741e69 24153b3 b741e69 83cfe1a b741e69 83cfe1a b741e69 83cfe1a b741e69 83cfe1a b741e69 83cfe1a c1db6c9 83cfe1a 24153b3 83cfe1a c1db6c9 83cfe1a c1db6c9 b741e69 c1db6c9 83cfe1a c1db6c9 83cfe1a 24153b3 83cfe1a b741e69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import requests
from bs4 import BeautifulSoup
import openai
import gradio as gr
import os
from dotenv import load_dotenv
import time
# Load environment variables
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
# Supported languages and their codes
LANGUAGES = {
"English": "en",
"Hindi": "hi",
"Telugu": "te",
"Kannada": "kn",
"Malayalam": "ml",
"Tamil": "ta"
}
# Function to scrape and summarize content from a URL
def scrape_and_summarize(url):
try:
response = requests.get(url, timeout=10) # Set timeout to 10 seconds
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
title = soup.find('title').get_text() if soup.find('title') else "No Title"
paragraphs = soup.find_all('p')
content = '\n'.join([para.get_text() for para in paragraphs])
# Truncate content if too large for API
if len(content) > 2000:
content = content[:2000] + "..."
# Summarize the content using OpenAI
prompt = f"Summarize the following content:\n\n{content}"
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are an expert summarizer."},
{"role": "user", "content": prompt}
]
)
summary = response.choices[0].message.content.strip()
return title, summary
except requests.exceptions.RequestException as e:
return "Error", f"Failed to scrape content from {url}: {str(e)}"
except Exception as e:
return "Error", f"Failed to summarize content from {url}: {str(e)}"
# Function to translate content using OpenAI
def translate_content(content, target_language):
if target_language == "en":
return content # No translation needed
try:
prompt = f"Translate the following content to {target_language}:\n\n{content}"
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a multilingual translator."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Translation failed: {str(e)}"
# Function to create newsletter
def create_newsletter(contents, language):
try:
prompt = "Create a newsletter with the following content:\n\n"
for title, summary, url in contents:
translated_summary = translate_content(summary, LANGUAGES[language])
prompt += f"Title: {title}\nURL: {url}\n\n{translated_summary}\n\n"
response = openai.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant expert in making newsletters."},
{"role": "user", "content": prompt}
]
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Failed to create newsletter: {str(e)}"
# Function to process URLs and generate newsletter
def process_urls(url1, url2, url3, url4, url5, language):
urls = [url for url in [url1, url2, url3, url4, url5] if url]
if not urls:
return "No URLs provided.", None
with gr.update() as progress:
progress(0.2)
time.sleep(1)
contents = []
for url in urls:
title, summary = scrape_and_summarize(url)
contents.append((title, summary, url))
with gr.update() as progress:
progress(0.6)
time.sleep(1)
newsletter = create_newsletter(contents, language)
with gr.update() as progress:
progress(1.0)
time.sleep(1)
file_path = "newsletter.txt"
try:
with open(file_path, "w", encoding="utf-8") as file:
file.write(newsletter)
except Exception as e:
return f"Failed to save newsletter: {str(e)}", None
return newsletter, file_path
# Gradio interface
iface = gr.Interface(
fn=process_urls,
inputs=[
gr.Textbox(label="URL 1"),
gr.Textbox(label="URL 2"),
gr.Textbox(label="URL 3"),
gr.Textbox(label="URL 4"),
gr.Textbox(label="URL 5"),
gr.Dropdown(choices=list(LANGUAGES.keys()), label="Select Language", value="English")
],
outputs=["html", gr.File(label="Download Newsletter")],
title="Multilingual AI Newsletter Generator",
description="Enter up to 5 URLs to generate a summarized newsletter in your preferred language. Copy and paste the output into your CMS tool for further editing. A progress indicator will show the process, and you can download the newsletter as a text file."
)
iface.launch()
|