import requests from bs4 import BeautifulSoup import openai import gradio as gr import os from dotenv import load_dotenv import time # Load environment variables load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") # Supported languages and their codes LANGUAGES = { "English": "en", "Hindi": "hi", "Telugu": "te", "Kannada": "kn", "Malayalam": "ml", "Tamil": "ta" } # Function to scrape and summarize content from a URL def scrape_and_summarize(url): try: response = requests.get(url, timeout=10) # Set timeout to 10 seconds response.raise_for_status() soup = BeautifulSoup(response.content, 'html.parser') title = soup.find('title').get_text() if soup.find('title') else "No Title" paragraphs = soup.find_all('p') content = '\n'.join([para.get_text() for para in paragraphs]) # Truncate content if too large for API if len(content) > 2000: content = content[:2000] + "..." # Summarize the content using OpenAI prompt = f"Summarize the following content:\n\n{content}" response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are an expert summarizer."}, {"role": "user", "content": prompt} ] ) summary = response.choices[0].message.content.strip() return title, summary except requests.exceptions.RequestException as e: return "Error", f"Failed to scrape content from {url}: {str(e)}" except Exception as e: return "Error", f"Failed to summarize content from {url}: {str(e)}" # Function to translate content using OpenAI def translate_content(content, target_language): if target_language == "en": return content # No translation needed try: prompt = f"Translate the following content to {target_language}:\n\n{content}" response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are a multilingual translator."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content.strip() except Exception as e: return f"Translation failed: {str(e)}" # Function to create newsletter def create_newsletter(contents, language): try: prompt = "Create a newsletter with the following content:\n\n" for title, summary, url in contents: translated_summary = translate_content(summary, LANGUAGES[language]) prompt += f"Title: {title}\nURL: {url}\n\n{translated_summary}\n\n" response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are a helpful assistant expert in making newsletters."}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content.strip() except Exception as e: return f"Failed to create newsletter: {str(e)}" # Function to process URLs and generate newsletter def process_urls(url1, url2, url3, url4, url5, language): urls = [url for url in [url1, url2, url3, url4, url5] if url] if not urls: return "No URLs provided.", None with gr.update() as progress: progress(0.2) time.sleep(1) contents = [] for url in urls: title, summary = scrape_and_summarize(url) contents.append((title, summary, url)) with gr.update() as progress: progress(0.6) time.sleep(1) newsletter = create_newsletter(contents, language) with gr.update() as progress: progress(1.0) time.sleep(1) file_path = "newsletter.txt" try: with open(file_path, "w", encoding="utf-8") as file: file.write(newsletter) except Exception as e: return f"Failed to save newsletter: {str(e)}", None return newsletter, file_path # Gradio interface iface = gr.Interface( fn=process_urls, inputs=[ gr.Textbox(label="URL 1"), gr.Textbox(label="URL 2"), gr.Textbox(label="URL 3"), gr.Textbox(label="URL 4"), gr.Textbox(label="URL 5"), gr.Dropdown(choices=list(LANGUAGES.keys()), label="Select Language", value="English") ], outputs=["html", gr.File(label="Download Newsletter")], title="Multilingual AI Newsletter Generator", description="Enter up to 5 URLs to generate a summarized newsletter in your preferred language. Copy and paste the output into your CMS tool for further editing. A progress indicator will show the process, and you can download the newsletter as a text file." ) iface.launch()