LeoYu commited on
Commit
6c3bb74
·
1 Parent(s): 5b351de

support 70b

Browse files
Files changed (3) hide show
  1. README.md +8 -0
  2. app.py +25 -15
  3. model.py +61 -59
README.md CHANGED
@@ -11,6 +11,14 @@ license: other
11
  suggested_hardware: a10g-small
12
  ---
13
 
 
 
 
 
 
 
 
 
14
  # LLAMA v2 Models
15
 
16
  Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
 
11
  suggested_hardware: a10g-small
12
  ---
13
 
14
+ # Llama 2 chatbot (Della)
15
+
16
+ This is a minimal chatbot built based on https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat
17
+
18
+ It is modified because Della does not provide internet access to its compute nodes.
19
+
20
+ Below is the original README.
21
+
22
  # LLAMA v2 Models
23
 
24
  Llama v2 was introduced in [this paper](https://arxiv.org/abs/2307.09288).
app.py CHANGED
@@ -3,7 +3,11 @@ from typing import Iterator
3
  import gradio as gr
4
  import torch
5
 
6
- from model import get_input_token_length, run
 
 
 
 
7
 
8
  DEFAULT_SYSTEM_PROMPT = """\
9
  You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
@@ -12,24 +16,30 @@ MAX_MAX_NEW_TOKENS = 2048
12
  DEFAULT_MAX_NEW_TOKENS = 1024
13
  MAX_INPUT_TOKEN_LENGTH = 4000
14
 
15
- DESCRIPTION = """
16
- # Llama-2 13B Chat
17
 
18
- This Space demonstrates model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, a Llama 2 model with 13B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
 
19
 
20
- 🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
 
21
 
22
- 🔨 Looking for an even more powerful model? Check out the large [**70B** model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
23
- 🐇 For a smaller model that you can run on many GPUs, check our [7B model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).
24
 
25
- """
 
 
 
 
 
26
 
27
- LICENSE = """
28
  <p/>
29
 
30
  ---
31
- As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
32
- this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
33
  """
34
 
35
  if not torch.cuda.is_available():
@@ -68,7 +78,7 @@ def generate(
68
  raise ValueError
69
 
70
  history = history_with_input[:-1]
71
- generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
72
  try:
73
  first_response = next(generator)
74
  yield history + [(message, first_response)]
@@ -86,7 +96,7 @@ def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
86
 
87
 
88
  def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
89
- input_token_length = get_input_token_length(message, chat_history, system_prompt)
90
  if input_token_length > MAX_INPUT_TOKEN_LENGTH:
91
  raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')
92
 
@@ -160,7 +170,7 @@ with gr.Blocks(css='style.css') as demo:
160
  inputs=textbox,
161
  outputs=[textbox, chatbot],
162
  fn=process_example,
163
- cache_examples=True,
164
  )
165
 
166
  gr.Markdown(LICENSE)
@@ -277,4 +287,4 @@ with gr.Blocks(css='style.css') as demo:
277
  api_name=False,
278
  )
279
 
280
- demo.queue(max_size=20).launch()
 
3
  import gradio as gr
4
  import torch
5
 
6
+ from model_any import LlamaModel
7
+
8
+ model_id = "meta-llama/Llama-2-70b-chat"
9
+ model_size = "70"
10
+ pipeline = LlamaModel(model_id)
11
 
12
  DEFAULT_SYSTEM_PROMPT = """\
13
  You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
 
16
  DEFAULT_MAX_NEW_TOKENS = 1024
17
  MAX_INPUT_TOKEN_LENGTH = 4000
18
 
19
+ DESCRIPTION = f"""
20
+ Llama-2 {model_size}B Chat
21
 
22
+ {model_id}
23
+ """
24
 
25
+ # DESCRIPTION = """
26
+ # # Llama-2 13B Chat
27
 
28
+ # This Space demonstrates model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, a Llama 2 model with 13B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
 
29
 
30
+ # 🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
31
+
32
+ # 🔨 Looking for an even more powerful model? Check out the large [**70B** model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
33
+ # 🐇 For a smaller model that you can run on many GPUs, check our [7B model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).
34
+
35
+ # """
36
 
37
+ LICENSE = f"""
38
  <p/>
39
 
40
  ---
41
+ As a derivate work of [Llama-2-{model_size}b-chat](https://huggingface.co/meta-llama/Llama-2-{model_size}b-chat) by Meta,
42
+ this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-{model_size}b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-{model_size}b-chat/blob/main/USE_POLICY.md).
43
  """
44
 
45
  if not torch.cuda.is_available():
 
78
  raise ValueError
79
 
80
  history = history_with_input[:-1]
81
+ generator = pipeline.run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
82
  try:
83
  first_response = next(generator)
84
  yield history + [(message, first_response)]
 
96
 
97
 
98
  def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
99
+ input_token_length = pipeline.get_input_token_length(message, chat_history, system_prompt)
100
  if input_token_length > MAX_INPUT_TOKEN_LENGTH:
101
  raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')
102
 
 
170
  inputs=textbox,
171
  outputs=[textbox, chatbot],
172
  fn=process_example,
173
+ cache_examples=False,
174
  )
175
 
176
  gr.Markdown(LICENSE)
 
287
  api_name=False,
288
  )
289
 
290
+ demo.queue(max_size=20).launch(share=True)
model.py CHANGED
@@ -4,71 +4,73 @@ from typing import Iterator
4
  import torch
5
  from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
 
7
- model_id = 'meta-llama/Llama-2-13b-chat-hf'
 
 
8
 
9
- if torch.cuda.is_available():
10
- config = AutoConfig.from_pretrained(model_id)
11
- config.pretraining_tp = 1
12
- model = AutoModelForCausalLM.from_pretrained(
13
- model_id,
14
- config=config,
15
- torch_dtype=torch.float16,
16
- load_in_4bit=True,
17
- device_map='auto'
18
- )
19
- else:
20
- model = None
21
- tokenizer = AutoTokenizer.from_pretrained(model_id)
22
 
23
 
24
- def get_prompt(message: str, chat_history: list[tuple[str, str]],
25
- system_prompt: str) -> str:
26
- texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
27
- # The first user input is _not_ stripped
28
- do_strip = False
29
- for user_input, response in chat_history:
30
- user_input = user_input.strip() if do_strip else user_input
31
- do_strip = True
32
- texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
33
- message = message.strip() if do_strip else message
34
- texts.append(f'{message} [/INST]')
35
- return ''.join(texts)
36
 
37
 
38
- def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
39
- prompt = get_prompt(message, chat_history, system_prompt)
40
- input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids']
41
- return input_ids.shape[-1]
42
 
43
 
44
- def run(message: str,
45
- chat_history: list[tuple[str, str]],
46
- system_prompt: str,
47
- max_new_tokens: int = 1024,
48
- temperature: float = 0.8,
49
- top_p: float = 0.95,
50
- top_k: int = 50) -> Iterator[str]:
51
- prompt = get_prompt(message, chat_history, system_prompt)
52
- inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
53
 
54
- streamer = TextIteratorStreamer(tokenizer,
55
- timeout=10.,
56
- skip_prompt=True,
57
- skip_special_tokens=True)
58
- generate_kwargs = dict(
59
- inputs,
60
- streamer=streamer,
61
- max_new_tokens=max_new_tokens,
62
- do_sample=True,
63
- top_p=top_p,
64
- top_k=top_k,
65
- temperature=temperature,
66
- num_beams=1,
67
- )
68
- t = Thread(target=model.generate, kwargs=generate_kwargs)
69
- t.start()
70
 
71
- outputs = []
72
- for text in streamer:
73
- outputs.append(text)
74
- yield ''.join(outputs)
 
4
  import torch
5
  from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
6
 
7
+ class LlamaModel:
8
+ def __init__(self, model_id: str):
9
+ self.model_id = model_id
10
 
11
+ if torch.cuda.is_available():
12
+ config = AutoConfig.from_pretrained(model_id)
13
+ config.pretraining_tp = 1
14
+ self.model = AutoModelForCausalLM.from_pretrained(
15
+ model_id,
16
+ config=config,
17
+ torch_dtype=torch.float16,
18
+ load_in_4bit=False,
19
+ device_map='auto'
20
+ )
21
+ else:
22
+ self.model = None
23
+ self.tokenizer = AutoTokenizer.from_pretrained(model_id)
24
 
25
 
26
+ def get_prompt(self, message: str, chat_history: list[tuple[str, str]],
27
+ system_prompt: str) -> str:
28
+ texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
29
+ # The first user input is _not_ stripped
30
+ do_strip = False
31
+ for user_input, response in chat_history:
32
+ user_input = user_input.strip() if do_strip else user_input
33
+ do_strip = True
34
+ texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
35
+ message = message.strip() if do_strip else message
36
+ texts.append(f'{message} [/INST]')
37
+ return ''.join(texts)
38
 
39
 
40
+ def get_input_token_length(self, message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int:
41
+ prompt = self.get_prompt(message, chat_history, system_prompt)
42
+ input_ids = self.tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids']
43
+ return input_ids.shape[-1]
44
 
45
 
46
+ def run(self, message: str,
47
+ chat_history: list[tuple[str, str]],
48
+ system_prompt: str,
49
+ max_new_tokens: int = 1024,
50
+ temperature: float = 0.8,
51
+ top_p: float = 0.95,
52
+ top_k: int = 50) -> Iterator[str]:
53
+ prompt = self.get_prompt(message, chat_history, system_prompt)
54
+ inputs = self.tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda')
55
 
56
+ streamer = TextIteratorStreamer(self.tokenizer,
57
+ timeout=10.,
58
+ skip_prompt=True,
59
+ skip_special_tokens=True)
60
+ generate_kwargs = dict(
61
+ inputs,
62
+ streamer=streamer,
63
+ max_new_tokens=max_new_tokens,
64
+ do_sample=True,
65
+ top_p=top_p,
66
+ top_k=top_k,
67
+ temperature=temperature,
68
+ num_beams=1,
69
+ )
70
+ t = Thread(target=self.model.generate, kwargs=generate_kwargs)
71
+ t.start()
72
 
73
+ outputs = []
74
+ for text in streamer:
75
+ outputs.append(text)
76
+ yield ''.join(outputs)