Spaces:
Sleeping
Sleeping
File size: 11,153 Bytes
44c2fe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import warnings
from dataclasses import dataclass
from typing import List
import torch
from einops import rearrange
from PIL import Image
from torch import nn
from transformers.models.bert import BertConfig, BertModel
from transformers.models.bloom import BloomConfig, BloomForCausalLM, BloomTokenizerFast
from transformers.models.convnext import ConvNextImageProcessor
from transformers.models.convnextv2 import ConvNextV2Config
from transformers.models.convnextv2.modeling_convnextv2 import ConvNextV2Model
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/collator.py#L13-L32
@dataclass
class ImageFeatureCollator:
image_processor: ConvNextImageProcessor
image_model: ConvNextV2Model
def __call__(self, batch_image: List[Image.Image]):
return self.tensorize_batch_image(batch_image=batch_image)
def tensorize_batch_image(self, batch_image: List[Image.Image]):
image_inputs = self.image_processor(batch_image, return_tensors="pt")
with torch.no_grad():
image_outputs = self.image_model(**image_inputs)
image_features = image_outputs["last_hidden_state"]
image_features = rearrange(image_features, "b c h w -> b h w c")
image_features = rearrange(image_features, "b h w c -> b (h w) c")
image_attentions = torch.ones(image_features.size()[:-1], dtype=torch.long)
return image_features, image_attentions
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/cutie.py#L6C1-L78C28
class IdentityForBertEmbeddings(nn.Module):
"""To skip all BertEmbeddings because another text embeddings provided by another model are used"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def forward(self, **bert_embeddings_args):
inputs_embeds = bert_embeddings_args.get("inputs_embeds", None)
return inputs_embeds
class Cutie(nn.Module):
"""Cutie - Qt - Query Transformer - Q-Former
Cutie is motivated by the underlying theoretical foundations of Q-Former presented in BLIP-2 https://arxiv.org/abs/2301.12597
It should be noted that Cutie differs from the specific approach described in the aforementioned paper
Both Cutie and Q-former have Query tokens.
Cutie uses the same unmodified BERT.
Q-former modifies BERT to behave differently on some tasks.
"""
def __init__(
self,
bert_config: BertConfig,
max_query_length: int = 32,
language_model_ignore_label: int = -100,
) -> None:
assert bert_config.is_decoder, "BERT must be a decoder"
assert bert_config.add_cross_attention, "BERT must have cross attention layer"
super().__init__()
self.bert_model = BertModel(bert_config, add_pooling_layer=False)
self.bert_model.embeddings = IdentityForBertEmbeddings()
self.query_tokens = nn.Parameter(
torch.zeros(1, max_query_length, bert_config.hidden_size)
)
self.query_tokens.data.normal_(mean=0.0, std=bert_config.initializer_range)
self.query_attentions = torch.ones(
self.query_tokens.size()[:-1], dtype=torch.long
)
self.query_labels = torch.full(
self.query_tokens.size()[:-1], language_model_ignore_label, dtype=torch.long
)
def forward(
self,
image_features: torch.Tensor,
image_attentions: torch.Tensor,
instruction_embeds: torch.Tensor,
instruction_attention_mask: torch.Tensor,
):
batch_size = image_features.size(0)
query_tokens = self.query_tokens.expand(batch_size, -1, -1).to(
self.query_tokens.device
)
query_attentions = self.query_attentions.expand(batch_size, -1).to(
self.query_tokens.device
)
cat_embeds = torch.cat([query_tokens, instruction_embeds], dim=1)
cat_attentions = torch.cat(
[query_attentions, instruction_attention_mask], dim=1
)
bert_outputs = self.bert_model(
inputs_embeds=cat_embeds,
attention_mask=cat_attentions,
encoder_hidden_states=image_features,
encoder_attention_mask=image_attentions,
)
cutie_output = bert_outputs.last_hidden_state[:, : query_tokens.size(1), :]
return cutie_output
# Copied from
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/visual_bloom.py#L12C1-L162C31
class VisualBloom(nn.Module):
"""A BLOOM-based model that can take image inputs"""
def __init__(
self,
convnextv2_config: ConvNextV2Config,
bert_config: BertConfig,
bloom_config: BloomConfig,
bloom_name: str,
use_frozen_bloom: bool = True,
) -> None:
super().__init__()
if (
convnextv2_config.hidden_sizes[-1]
== bert_config.hidden_size
== bloom_config.hidden_size
):
self.use_projection = False
warnings.warn(
"All embedding dimensions are equal. No linear projection layers are created."
)
else:
self.use_projection = True
self.text_to_cutie = nn.Linear(
bloom_config.hidden_size, bert_config.hidden_size
)
self.image_to_cutie = nn.Linear(
convnextv2_config.hidden_sizes[-1], bert_config.hidden_size
)
self.cutie_to_text = nn.Linear(
bert_config.hidden_size, bloom_config.hidden_size
)
self.cutie_model = Cutie(bert_config)
# Load and freeze BLOOM model
if use_frozen_bloom:
self.bloom_model = BloomForCausalLM.from_pretrained(bloom_name)
for param in self.bloom_model.parameters():
param.requires_grad = False
else:
self.bloom_model = BloomForCausalLM(bloom_config)
def forward(
self,
# Image model outputs - Q-former inputs
image_features: torch.Tensor,
image_attentions: torch.Tensor,
# Q-former inputs
instruction_input_ids: torch.Tensor,
instruction_attention_mask: torch.Tensor,
# Frozen language model inputs
language_model_input_ids: torch.Tensor,
language_model_attention_mask: torch.Tensor,
language_model_labels: torch.Tensor,
):
instruction_embeds = self.bloom_model.transformer.word_embeddings(
instruction_input_ids
)
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
instruction_embeds
)
if self.use_projection:
image_features = self.image_to_cutie(image_features)
instruction_embeds = self.text_to_cutie(instruction_embeds)
cutie_output = self.cutie_model(
image_features=image_features,
image_attentions=image_attentions,
instruction_embeds=instruction_embeds,
instruction_attention_mask=instruction_attention_mask,
)
if self.use_projection:
cutie_output = self.cutie_to_text(cutie_output)
cutie_attentions = self.cutie_model.query_attentions.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
cutie_labels = self.cutie_model.query_labels.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
language_model_embeds = self.bloom_model.transformer.word_embeddings(
language_model_input_ids
)
language_model_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
language_model_embeds
)
cat_embeds = torch.cat([cutie_output, language_model_embeds], dim=1)
cat_attentions = torch.cat(
[cutie_attentions, language_model_attention_mask], dim=1
)
cat_labels = torch.cat([cutie_labels, language_model_labels], dim=1)
bloom_outputs = self.bloom_model(
inputs_embeds=cat_embeds, attention_mask=cat_attentions, labels=cat_labels
)
return bloom_outputs
@torch.no_grad()
def generate(
self,
# Image model outputs - Q-former inputs
image_features: torch.Tensor,
image_attentions: torch.Tensor,
# Q-former inputs
instruction_input_ids: torch.Tensor,
instruction_attention_mask: torch.Tensor,
):
instruction_embeds = self.bloom_model.transformer.word_embeddings(
instruction_input_ids
)
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
instruction_embeds
)
if self.use_projection:
image_features = self.image_to_cutie(image_features)
cutie_instruction_embeds = self.text_to_cutie(instruction_embeds)
cutie_output = self.cutie_model(
image_features=image_features,
image_attentions=image_attentions,
instruction_embeds=cutie_instruction_embeds,
instruction_attention_mask=instruction_attention_mask,
)
if self.use_projection:
cutie_output = self.cutie_to_text(cutie_output)
cutie_attentions = self.cutie_model.query_attentions.expand(
cutie_output.size(0), -1
).to(cutie_output.device)
cat_embeds = torch.cat([cutie_output, instruction_embeds], dim=1)
cat_attentions = torch.cat(
[cutie_attentions, instruction_attention_mask], dim=1
)
language_output = self.bloom_model.generate(
inputs_embeds=cat_embeds,
attention_mask=cat_attentions,
max_length=96,
penalty_alpha=0.6,
top_k=4,
)
return language_output
def setup_models(visual_bloom_state_dict_path: str):
image_model_name = "facebook/convnextv2-large-22k-224"
image_config = ConvNextV2Config.from_pretrained(image_model_name)
image_processor = ConvNextImageProcessor.from_pretrained(image_model_name)
image_model = ConvNextV2Model.from_pretrained(image_model_name)
image_feature_collator = ImageFeatureCollator(image_processor, image_model)
bloom_model_name = "bigscience/bloomz-1b7"
bloom_config = BloomConfig.from_pretrained(bloom_model_name)
tokenizer = BloomTokenizerFast.from_pretrained(bloom_model_name)
tokenizer.padding_side = "right"
bert_config = BertConfig(
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=16,
is_decoder=True,
add_cross_attention=True,
)
visual_bloom = VisualBloom(
image_config,
bert_config,
bloom_config,
bloom_model_name,
use_frozen_bloom=False,
)
visual_bloom.load_state_dict(torch.load(visual_bloom_state_dict_path))
visual_bloom = visual_bloom.eval()
return {
"visual_bloom": visual_bloom,
"tokenizer": tokenizer,
"image_feature_collator": image_feature_collator,
}
|