dinhquangson commited on
Commit
b403d85
·
verified ·
1 Parent(s): f92376d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -210,11 +210,14 @@ def search(prompt: str):
210
  model="mixtral-8x22b-finetuned",
211
  generation_kwargs = {"max_tokens": 512}
212
  )
 
 
213
  querying = Pipeline()
214
  querying.add_component("sparse_text_embedder", FastembedSparseTextEmbedder(model="Qdrant/bm42-all-minilm-l6-v2-attentions"))
215
  querying.add_component("dense_text_embedder", FastembedTextEmbedder(
216
  model="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", prefix="Represent this sentence for searching relevant passages: ")
217
  )
 
218
  querying.add_component("retriever", QdrantHybridRetriever(document_store=document_store))
219
  querying.add_component("document_joiner", DocumentJoiner())
220
  querying.add_component("ranker", TransformersSimilarityRanker(model="BAAI/bge-m3"))
@@ -223,17 +226,20 @@ def search(prompt: str):
223
 
224
  querying.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
225
  querying.connect("dense_text_embedder.embedding", "retriever.query_embedding")
 
226
  querying.connect("retriever", "document_joiner")
227
  querying.connect("document_joiner", "ranker")
228
  querying.connect("ranker.documents", "prompt_builder.documents")
229
  querying.connect("prompt_builder", "llm")
230
  querying.debug=True
231
-
232
  results = querying.run(
233
- {"dense_text_embedder": {"text": prompt},
234
- "sparse_text_embedder": {"text": prompt},
235
- "ranker": {"query": prompt},
236
- "prompt_builder": {"question": prompt}
 
 
237
  }
238
  )
239
 
 
210
  model="mixtral-8x22b-finetuned",
211
  generation_kwargs = {"max_tokens": 512}
212
  )
213
+ metadata_extractor = QueryMetadataExtractor()
214
+
215
  querying = Pipeline()
216
  querying.add_component("sparse_text_embedder", FastembedSparseTextEmbedder(model="Qdrant/bm42-all-minilm-l6-v2-attentions"))
217
  querying.add_component("dense_text_embedder", FastembedTextEmbedder(
218
  model="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", prefix="Represent this sentence for searching relevant passages: ")
219
  )
220
+ querying.add_component(instance=metadata_extractor, name="metadata_extractor")
221
  querying.add_component("retriever", QdrantHybridRetriever(document_store=document_store))
222
  querying.add_component("document_joiner", DocumentJoiner())
223
  querying.add_component("ranker", TransformersSimilarityRanker(model="BAAI/bge-m3"))
 
226
 
227
  querying.connect("sparse_text_embedder.sparse_embedding", "retriever.query_sparse_embedding")
228
  querying.connect("dense_text_embedder.embedding", "retriever.query_embedding")
229
+ querying.connect("metadata_extractor.filters", "retriever.filters")
230
  querying.connect("retriever", "document_joiner")
231
  querying.connect("document_joiner", "ranker")
232
  querying.connect("ranker.documents", "prompt_builder.documents")
233
  querying.connect("prompt_builder", "llm")
234
  querying.debug=True
235
+ metadata_fields = {"publish_date", "publisher", "document_type"}
236
  results = querying.run(
237
+ {
238
+ "dense_text_embedder": {"text": prompt},
239
+ "sparse_text_embedder": {"text": prompt},
240
+ "metadata_extractor": {"query": prompt, "metadata_fields": metadata_fields},
241
+ "ranker": {"query": prompt},
242
+ "prompt_builder": {"question": prompt}
243
  }
244
  )
245