Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
pipeline,
|
3 |
+
AutoModelForSpeechSeq2Seq,
|
4 |
+
AutoProcessor,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
AutoTokenizer,
|
7 |
+
BitsAndBytesConfig,
|
8 |
+
)
|
9 |
+
import torch
|
10 |
+
import os
|
11 |
+
import random
|
12 |
+
|
13 |
+
def yt2mp3(url, outputMp3F):
|
14 |
+
tmpVideoF=random.random()
|
15 |
+
os.system(f"./bin/youtube-dl -o /tmp/{tmpVideoF} --verbose " + url)
|
16 |
+
os.system(f"ffmpeg -y -i /tmp/{tmpVideoF}.* -vn -ar 44100 -ac 2 -b:a 192k {outputMp3F}")
|
17 |
+
|
18 |
+
|
19 |
+
def speech2text(mp3_file):
|
20 |
+
# Set the computation device to GPU (if available) or CPU
|
21 |
+
device = 'cuda:0'
|
22 |
+
|
23 |
+
# Choose data type based on CUDA availability (float16 for GPU, float32 for CPU)
|
24 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
25 |
+
|
26 |
+
# Model identifier for the speech-to-text model
|
27 |
+
model_id = "distil-whisper/distil-large-v2"
|
28 |
+
|
29 |
+
# Load the model with specified configurations for efficient processing
|
30 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
31 |
+
model_id,
|
32 |
+
torch_dtype=torch_dtype,
|
33 |
+
low_cpu_mem_usage=True,
|
34 |
+
use_safetensors=True,
|
35 |
+
use_flash_attention_2=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# Move the model to the specified device (GPU/CPU)
|
39 |
+
model.to(device)
|
40 |
+
|
41 |
+
# Load the processor for the model (handling tokenization and feature extraction)
|
42 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
43 |
+
|
44 |
+
# Set up a speech recognition pipeline with the model and processor
|
45 |
+
pipe = pipeline(
|
46 |
+
"automatic-speech-recognition",
|
47 |
+
model=model,
|
48 |
+
tokenizer=processor.tokenizer,
|
49 |
+
feature_extractor=processor.feature_extractor,
|
50 |
+
max_new_tokens=128,
|
51 |
+
chunk_length_s=15,
|
52 |
+
batch_size=16,
|
53 |
+
torch_dtype=torch_dtype,
|
54 |
+
device=device,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Process the MP3 file through the pipeline to get the speech recognition result
|
58 |
+
result = pipe(mp3_file)
|
59 |
+
|
60 |
+
# Extract the text from the recognition result
|
61 |
+
text_from_video = result["text"]
|
62 |
+
|
63 |
+
# Return the extracted text
|
64 |
+
return text_from_video
|
65 |
+
|
66 |
+
|
67 |
+
def chat(system_prompt, text):
|
68 |
+
"""
|
69 |
+
It is not a good practice to load the model again and again,
|
70 |
+
but for the sake of simlicity for demo, let's keep as it is
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Define the model name to be used for the chat function
|
74 |
+
model_name = "meta-llama/Llama-2-7b-chat-hf"
|
75 |
+
# Authentication token for Hugging Face API
|
76 |
+
token = os.environ['HUGGINGFACE_TOKEN']
|
77 |
+
|
78 |
+
# Configure the model to load in a quantized 8-bit format for efficiency
|
79 |
+
bnb_config = BitsAndBytesConfig(
|
80 |
+
load_in_8bit=True
|
81 |
+
)
|
82 |
+
|
83 |
+
# Set the device map to load the model on GPU 0
|
84 |
+
device_map = {"": 0}
|
85 |
+
# Load the model from Hugging Face with the specified configuration
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
model_name,
|
88 |
+
quantization_config=bnb_config,
|
89 |
+
device_map=device_map,
|
90 |
+
use_auth_token=token
|
91 |
+
)
|
92 |
+
|
93 |
+
# Load the tokenizer for the model
|
94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
|
95 |
+
|
96 |
+
# Create a text-generation pipeline with the loaded model and tokenizer
|
97 |
+
llama_pipeline = pipeline(task="text-generation", model=model, tokenizer=tokenizer)
|
98 |
+
|
99 |
+
# Format the input text with special tokens for the model
|
100 |
+
text = f"""
|
101 |
+
<s>[INST] <<SYS>>
|
102 |
+
{system_prompt}
|
103 |
+
<</SYS>>
|
104 |
+
{text}[/INST]
|
105 |
+
"""
|
106 |
+
|
107 |
+
# Generate sequences using the pipeline with specified parameters
|
108 |
+
sequences = llama_pipeline(
|
109 |
+
text,
|
110 |
+
do_sample=True,
|
111 |
+
top_k=10,
|
112 |
+
num_return_sequences=1,
|
113 |
+
eos_token_id=tokenizer.eos_token_id,
|
114 |
+
max_length=32000
|
115 |
+
)
|
116 |
+
|
117 |
+
# Extract the generated text from the sequences
|
118 |
+
generated_text = sequences[0]["generated_text"]
|
119 |
+
# Trim the generated text to remove the instruction part
|
120 |
+
generated_text = generated_text[generated_text.find('[/INST]')+len('[/INST]'):]
|
121 |
+
|
122 |
+
# Return the processed generated text
|
123 |
+
return generated_text
|
124 |
+
|
125 |
+
def summarize(text):
|
126 |
+
# Define the maximum input length for each iteration of summarization
|
127 |
+
input_len = 10000
|
128 |
+
|
129 |
+
# Start an infinite loop to repeatedly summarize the text
|
130 |
+
while True:
|
131 |
+
# Print the current length of the text
|
132 |
+
print(len(text))
|
133 |
+
# Call the chat function to summarize the text. Only the first 'input_len' characters are considered for summarization
|
134 |
+
summary = chat("", "Summarize the following: " + text[0:input_len])
|
135 |
+
|
136 |
+
if len(text) < input_len:
|
137 |
+
return summary
|
138 |
+
|
139 |
+
# Concatenate the current summary with the remaining part of the text for the next iteration
|
140 |
+
text = summary + " " + text[input_len:]
|
141 |
+
|
142 |
+
import gradio as gr
|
143 |
+
|
144 |
+
# Fungsi dan impor yang sudah Anda miliki sebelumnya
|
145 |
+
|
146 |
+
# Fungsi untuk merangkum teks dari URL YouTube
|
147 |
+
def summarize_from_youtube(url):
|
148 |
+
# Unduh audio dari URL YouTube dan transkripsi ucapan menjadi teks
|
149 |
+
outputMp3F = "./files/audio.mp3"
|
150 |
+
yt2mp3(url=url, outputMp3F=outputMp3F)
|
151 |
+
transcribed = speech2text(mp3_file=outputMp3F)
|
152 |
+
# Rangkum teks yang telah ditranskripsi
|
153 |
+
summary = summarize(transcribed)
|
154 |
+
return summary
|
155 |
+
|
156 |
+
# Konfigurasi antarmuka Gradio
|
157 |
+
youtube_url = gr.inputs.Textbox(lines=1, label="Masukkan URL YouTube")
|
158 |
+
output_text = gr.outputs.Textbox(label="Ringkasan")
|
159 |
+
|
160 |
+
# Membuat antarmuka Gradio
|
161 |
+
gr.Interface(
|
162 |
+
fn=summarize_from_youtube,
|
163 |
+
inputs=youtube_url,
|
164 |
+
outputs=output_text,
|
165 |
+
title="Peringkas YouTube",
|
166 |
+
description="Masukkan URL YouTube untuk merangkum kontennya."
|
167 |
+
).launch()
|