File size: 5,496 Bytes
7091430
 
172ec24
7091430
 
 
 
 
172ec24
7091430
 
 
 
 
 
 
 
 
172ec24
7091430
 
 
172ec24
2ad1599
 
7091430
26faa5f
7091430
 
 
 
 
 
 
 
 
 
 
 
 
80ca55c
7091430
 
 
 
 
 
 
 
 
 
 
 
172ec24
7091430
 
 
 
 
 
 
172ec24
 
 
 
 
 
 
 
 
 
 
 
 
 
7091430
 
 
 
 
ccb306d
7091430
 
 
 
 
 
 
 
 
 
 
ccb306d
7091430
 
 
80ca55c
7091430
ccb306d
7091430
 
 
 
 
 
 
 
 
 
 
 
7c1a8fa
7091430
 
 
 
 
 
 
7c1a8fa
 
172ec24
 
7091430
 
5d7014c
7091430
 
 
 
 
213b090
 
7091430
 
 
ccb306d
7091430
172ec24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
import gradio as gr
import time

BATCH_SIZE = 16
MAX_AUDIO_MINS = 30  # maximum audio input in minutes

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
use_flash_attention_2 = is_flash_attn_2_available()

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
    "distil-whisper/distil-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)

if not use_flash_attention_2:
    # use flash attention from pytorch sdpa
    model = model.to_bettertransformer()
    distilled_model = distilled_model.to_bettertransformer()

processor = AutoProcessor.from_pretrained("openai/whisper-large-v2")

model.to(device)
distilled_model.to(device)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "en", "task": "transcribe"},
)
pipe_forward = pipe._forward

distil_pipe = pipeline(
    "automatic-speech-recognition",
    model=distilled_model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "en", "task": "transcribe"},
)
distil_pipe_forward = distil_pipe._forward

def transcribe(inputs):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")

    with open(inputs, "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60

    if audio_length_mins > MAX_AUDIO_MINS:
        raise gr.Error(
            f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes."
            f"Got an audio of length {round(audio_length_mins, 3)} minutes."
        )

    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    def _forward_distil_time(*args, **kwargs):
        global distil_runtime
        start_time = time.time()
        result = distil_pipe_forward(*args, **kwargs)
        distil_runtime = time.time() - start_time
        distil_runtime = round(distil_runtime, 2)
        return result

    distil_pipe._forward = _forward_distil_time
    distil_text = distil_pipe(inputs, batch_size=BATCH_SIZE)["text"]
    yield distil_text, distil_runtime, None, None, None

    def _forward_time(*args, **kwargs):
        global runtime
        start_time = time.time()
        result = pipe_forward(*args, **kwargs)
        runtime = time.time() - start_time
        runtime = round(runtime, 2)
        return result

    pipe._forward = _forward_time
    text = pipe(inputs, batch_size=BATCH_SIZE)["text"]

    yield distil_text, distil_runtime, text, runtime

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.HTML(
            """
                <div style="text-align: center; max-width: 700px; margin: 0 auto;">
                  <div
                    style="
                      display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                    "
                  >
                    <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                      Whisper vs Distil-Whisper: Speed Comparison
                    </h1>
                  </div>
                </div>
            """
        )
        gr.HTML(
            f"""
            Speed comparison between <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper</a> 
            and <a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper</a>. Both models use the <a href="https://huggingface.co/distil-whisper/distil-large-v2#long-form-transcription"> chunked long-form transcription algorithm</a> 
            in 🤗 Transformers with Flash Attention support. To ensure fair usage of the Space, we ask that audio 
            file inputs are kept to < 30 mins.
            """
        )
        audio = gr.components.Audio(type="filepath", label="Audio input")
        button = gr.Button("Transcribe")
        with gr.Row():
            distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)")
            runtime = gr.components.Textbox(label="Whisper Transcription Time (s)")
        with gr.Row():
            distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True)
            transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True)
        button.click(
            fn=transcribe,
            inputs=audio,
            outputs=[distil_transcription, distil_runtime, transcription, runtime],
        )
    demo.queue(max_size=10).launch()