sanchit-gandhi's picture
tidy again
7c1a8fa
raw
history blame
5.5 kB
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from transformers.utils import is_flash_attn_2_available
from transformers.pipelines.audio_utils import ffmpeg_read
import torch
import gradio as gr
import time
BATCH_SIZE = 16
MAX_AUDIO_MINS = 30 # maximum audio input in minutes
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
use_flash_attention_2 = is_flash_attn_2_available()
model = AutoModelForSpeechSeq2Seq.from_pretrained(
"openai/whisper-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)
distilled_model = AutoModelForSpeechSeq2Seq.from_pretrained(
"distil-whisper/distil-large-v2", torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=use_flash_attention_2
)
if not use_flash_attention_2:
# use flash attention from pytorch sdpa
model = model.to_bettertransformer()
distilled_model = distilled_model.to_bettertransformer()
processor = AutoProcessor.from_pretrained("openai/whisper-large-v2")
model.to(device)
distilled_model.to(device)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
torch_dtype=torch_dtype,
device=device,
generate_kwargs={"language": "en", "task": "transcribe"},
)
pipe_forward = pipe._forward
distil_pipe = pipeline(
"automatic-speech-recognition",
model=distilled_model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=15,
torch_dtype=torch_dtype,
device=device,
generate_kwargs={"language": "en", "task": "transcribe"},
)
distil_pipe_forward = distil_pipe._forward
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please record or upload an audio file before submitting your request.")
with open(inputs, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
audio_length_mins = len(inputs) / pipe.feature_extractor.sampling_rate / 60
if audio_length_mins > MAX_AUDIO_MINS:
raise gr.Error(
f"To ensure fair usage of the Space, the maximum audio length permitted is {MAX_AUDIO_MINS} minutes."
f"Got an audio of length {round(audio_length_mins, 3)} minutes."
)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
def _forward_distil_time(*args, **kwargs):
global distil_runtime
start_time = time.time()
result = distil_pipe_forward(*args, **kwargs)
distil_runtime = time.time() - start_time
distil_runtime = round(distil_runtime, 2)
return result
distil_pipe._forward = _forward_distil_time
distil_text = distil_pipe(inputs, batch_size=BATCH_SIZE)["text"]
yield distil_text, distil_runtime, None, None, None
def _forward_time(*args, **kwargs):
global runtime
start_time = time.time()
result = pipe_forward(*args, **kwargs)
runtime = time.time() - start_time
runtime = round(runtime, 2)
return result
pipe._forward = _forward_time
text = pipe(inputs, batch_size=BATCH_SIZE)["text"]
yield distil_text, distil_runtime, text, runtime
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
Whisper vs Distil-Whisper: Speed Comparison
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
Speed comparison between <a href="https://huggingface.co/openai/whisper-large-v2"> Whisper</a>
and <a href="https://huggingface.co/distil-whisper/distil-large-v2"> Distil-Whisper</a>. Both models use the <a href="https://huggingface.co/distil-whisper/distil-large-v2#long-form-transcription"> chunked long-form transcription algorithm</a>
in πŸ€— Transformers with Flash Attention support. To ensure fair usage of the Space, we ask that audio
file inputs are kept to < 30 mins.
"""
)
audio = gr.components.Audio(type="filepath", label="Audio input")
button = gr.Button("Transcribe")
with gr.Row():
distil_runtime = gr.components.Textbox(label="Distil-Whisper Transcription Time (s)")
runtime = gr.components.Textbox(label="Whisper Transcription Time (s)")
with gr.Row():
distil_transcription = gr.components.Textbox(label="Distil-Whisper Transcription", show_copy_button=True)
transcription = gr.components.Textbox(label="Whisper Transcription", show_copy_button=True)
button.click(
fn=transcribe,
inputs=audio,
outputs=[distil_transcription, distil_runtime, transcription, runtime],
)
demo.queue(max_size=10).launch()