Spaces:
Build error
Build error
Initial checking
Browse files- app.py +79 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/config.json +24 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/pytorch_model.bin +3 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/special_tokens_map.json +7 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/tokenizer.json +0 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/tokenizer_config.json +14 -0
- model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/vocab.txt +0 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.models.distilbert.modeling_distilbert import DistilBertPreTrainedModel, DistilBertModel
|
7 |
+
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
class IMBDModel(DistilBertPreTrainedModel):
|
12 |
+
|
13 |
+
def __init__(self, config : PretrainedConfig):
|
14 |
+
super(IMBDModel, self).__init__(config)
|
15 |
+
|
16 |
+
self.distilbert = DistilBertModel(config)
|
17 |
+
|
18 |
+
# # freeze whole model
|
19 |
+
# for params in self.distilbert.parameters():
|
20 |
+
# params.requires_grad = False
|
21 |
+
|
22 |
+
# layers = self.distilbert.transformer.layer
|
23 |
+
# print("Total Layers:", len(layers))
|
24 |
+
|
25 |
+
# # Enable trainable few layers.
|
26 |
+
# for layer_num in [5]:
|
27 |
+
# for params in layers[layer_num].parameters():
|
28 |
+
# params.requires_grad = True
|
29 |
+
|
30 |
+
self.fc = nn.Linear(config.dim, 1)
|
31 |
+
|
32 |
+
self.post_init()
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
|
36 |
+
x = self.distilbert(**x).last_hidden_state
|
37 |
+
pooled_output = x[:, 0]
|
38 |
+
|
39 |
+
x = self.fc(pooled_output)
|
40 |
+
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
infer_path = "./model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/"
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(infer_path)
|
47 |
+
|
48 |
+
pretrained_model = IMBDModel.from_pretrained(infer_path, local_files_only=True)
|
49 |
+
pretrained_model.eval()
|
50 |
+
|
51 |
+
def prediction(text):
|
52 |
+
|
53 |
+
tokens = tokenizer(text, padding='max_length', truncation=True, max_length=512)
|
54 |
+
tokens = {k:torch.tensor([v]) for k, v in tokens.items()}
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
|
58 |
+
scores = pretrained_model(tokens)
|
59 |
+
scores = torch.sigmoid(scores).numpy()
|
60 |
+
|
61 |
+
scores = scores[0][0]
|
62 |
+
|
63 |
+
if scores >= 0.6:
|
64 |
+
label = "Positive"
|
65 |
+
elif 0.4 <= scores < 0.6:
|
66 |
+
label = "Neutral"
|
67 |
+
else:
|
68 |
+
label = "Negative"
|
69 |
+
|
70 |
+
return f"{label} feedback", f"{scores:.2f}"
|
71 |
+
|
72 |
+
|
73 |
+
demo = gr.Interface(
|
74 |
+
fn=prediction,
|
75 |
+
inputs=gr.Textbox(lines=5, placeholder="Text to analyze..."),
|
76 |
+
outputs=["text", "text"]
|
77 |
+
)
|
78 |
+
|
79 |
+
demo.launch(server_name="0.0.0.0")
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"IMBDModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.23.1",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edef516831654dda01b1564712e0d950eb18db4c5a13b65f33f3dad305f1b4fc
|
3 |
+
size 265486837
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_lower_case": true,
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"model_max_length": 512,
|
6 |
+
"name_or_path": "distilbert-base-uncased",
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"special_tokens_map_file": null,
|
10 |
+
"strip_accents": null,
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "DistilBertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
model/fold0_epoch01_loss0.1403_val_loss0.1994_roc_auc0.9779/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
transformers==4.23.1
|