import streamlit as st from transformers import pipeline # function part # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") text = image_to_text_model(url)[0]["generated_text"] return text # text2story def text2story(text): pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") story_text = pipe(text)[0]['generated_text'] return story_text # text2audio def text2audio(story_text): pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") audio_data = pipe(story_text) return audio_data st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") st.header("Turn Your Image to Audio Story") uploaded_file = st.file_uploader("Select an Image...") if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) #Stage 1: Image to Text st.text('Processing img2text...') scenario = img2text(uploaded_file.name) st.write(scenario) #Stage 2: Text to Story st.text('Generating a story...') story = txt2story(scenario) st.write(story) #Stage 3: Story to Audio data st.text('Generating audio data...') audio_data =text2audio(story) # Play button if st.button("Play Audio"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate = audio_data['sampling_rate']) if __name__ == "__main__": main()