import pathlib import tempfile from typing import Generator import gradio as gr import torch import yaml from gradio_logsview import LogsView has_gpu = torch.cuda.is_available() cli = "mergekit-yaml config.yaml merge --copy-tokenizer" + ( " --cuda --low-cpu-memory" if has_gpu else " --allow-crimes --out-shard-size 1B --lazy-unpickle" ) print(cli) ## This Space is heavily inspired by LazyMergeKit by Maxime Labonne ## https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb MARKDOWN_DESCRIPTION = """ # mergekit-gui The fastest way to perform a model merge 🔥 Specify a YAML configuration file (see examples below) and a HF token and this app will perform the merge and upload the merged model to your user profile. """ MARKDOWN_ARTICLE = """ ___ ## Merge Configuration [Mergekit](https://github.com/arcee-ai/mergekit) configurations are YAML documents specifying the operations to perform in order to produce your merged model. Below are the primary elements of a configuration file: - `merge_method`: Specifies the method to use for merging models. See [Merge Methods](https://github.com/arcee-ai/mergekit#merge-methods) for a list. - `slices`: Defines slices of layers from different models to be used. This field is mutually exclusive with `models`. - `models`: Defines entire models to be used for merging. This field is mutually exclusive with `slices`. - `base_model`: Specifies the base model used in some merging methods. - `parameters`: Holds various parameters such as weights and densities, which can also be specified at different levels of the configuration. - `dtype`: Specifies the data type used for the merging operation. - `tokenizer_source`: Determines how to construct a tokenizer for the merged model. ## Merge Methods A quick overview of the currently supported merge methods: | Method | `merge_method` value | Multi-Model | Uses base model | | -------------------------------------------------------------------------------------------- | -------------------- | ----------- | --------------- | | Linear ([Model Soups](https://arxiv.org/abs/2203.05482)) | `linear` | ✅ | ❌ | | SLERP | `slerp` | ❌ | ✅ | | [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `task_arithmetic` | ✅ | ✅ | | [TIES](https://arxiv.org/abs/2306.01708) | `ties` | ✅ | ✅ | | [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) | `dare_ties` | ✅ | ✅ | | [DARE](https://arxiv.org/abs/2311.03099) [Task Arithmetic](https://arxiv.org/abs/2212.04089) | `dare_linear` | ✅ | ✅ | | Passthrough | `passthrough` | ❌ | ❌ | | [Model Stock](https://arxiv.org/abs/2403.19522) | `model_stock` | ✅ | ✅ | """ examples = [[f.name, f.read_text()] for f in pathlib.Path("examples").glob("*.yml")] def merge( example_filename: str, yaml_config: str, hf_token: str, repo_name: str ) -> Generator[str, None, None]: if not yaml_config: raise gr.Error("Empty yaml, pick an example below") try: _ = yaml.safe_load(yaml_config) except Exception as e: raise gr.Error(f"Invalid yaml {e}") with tempfile.TemporaryDirectory() as tmpdirname: tmpdir = pathlib.Path(tmpdirname) with open(tmpdir / "config.yaml", "w", encoding="utf-8") as f: f.write(yaml_config) yield from LogsView.run_process(cli.split()) ## TODO(implement upload at the end of the merge, and display the repo URL) with gr.Blocks() as demo: gr.Markdown(MARKDOWN_DESCRIPTION) with gr.Row(): filename = gr.Textbox(visible=False, label="filename") config = gr.Code( language="yaml", lines=10, label="config.yaml", ) with gr.Column(): token = gr.Textbox( lines=1, label="HF Write Token", info="https://hf.co/settings/token", type="password", placeholder="optional, will not upload merge if empty (dry-run)", ) repo_name = gr.Textbox( lines=1, label="Repo name", placeholder="optional, will create a random name if empty", ) button = gr.Button("Merge", variant="primary") logs = LogsView() gr.Examples(examples, label="Examples", inputs=[filename, config], outputs=[logs]) gr.Markdown(MARKDOWN_ARTICLE) button.click(fn=merge, inputs=[filename, config, token, repo_name], outputs=[logs]) demo.queue(default_concurrency_limit=1).launch()