|
import gradio as gr |
|
from llama_cpp import Llama |
|
|
|
llm = Llama(model_path="model.gguf", n_ctx=8000, n_threads=2, chat_format="chatml") |
|
|
|
def generate(message, history, do_sample=True, temperature=0.7,max_tokens=4000, top_p=0.9): |
|
system_prompt = """You are an advanced artificial intelligence assistant. Your role is to give clear and precise answers.""" |
|
formatted_prompt = [{"role": "system", "content": system_prompt}] |
|
for user_prompt, bot_response in history: |
|
formatted_prompt.append({"role": "user", "content": user_prompt}) |
|
formatted_prompt.append({"role": "assistant", "content": bot_response }) |
|
formatted_prompt.append({"role": "user", "content": message}) |
|
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True) |
|
response = "" |
|
for chunk in stream_response: |
|
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: |
|
response += chunk['choices'][0]["delta"]["content"] |
|
yield response |
|
|
|
mychatbot = gr.Chatbot( |
|
avatar_images=["user.png", "botnb.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) |
|
|
|
iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, retry_btn=None, undo_btn=None) |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("<center><h1> Hermes-2-Theta-Llama-3-8B - Q8_K_M - GGUF (Quantized) </h1></center>") |
|
iface.render() |
|
|
|
demo.queue().launch(show_api=False, server_name="0.0.0.0") |
|
|