File size: 4,334 Bytes
32562a3
751c042
 
3878f81
b34b7d7
 
 
0770449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34b7d7
0770449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34b7d7
 
 
 
 
deeee60
443105b
0770449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13603d
0770449
32562a3
2c3245b
 
 
 
 
 
 
 
d13603d
2c3245b
d13603d
2c3245b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d13603d
 
 
2c3245b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles

from pydantic import BaseModel
import pickle
import uvicorn

import logging
import os
import shutil
import subprocess

import torch
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings

# from langchain.embeddings import HuggingFaceEmbeddings
from run_localGPT import load_model
from prompt_template_utils import get_prompt_template

# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from werkzeug.utils import secure_filename

from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME

if torch.backends.mps.is_available():
    DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
    DEVICE_TYPE = "cuda"
else:
    DEVICE_TYPE = "cpu"

SHOW_SOURCES = True
logging.info(f"Running on: {DEVICE_TYPE}")
logging.info(f"Display Source Documents set to: {SHOW_SOURCES}")

EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})

# load the vectorstore
DB = Chroma(
    persist_directory=PERSIST_DIRECTORY,
    embedding_function=EMBEDDINGS,
    client_settings=CHROMA_SETTINGS,
)

RETRIEVER = DB.as_retriever()

LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)

QA = RetrievalQA.from_chain_type(
    llm=LLM,
    chain_type="stuff",
    retriever=RETRIEVER,
    return_source_documents=SHOW_SOURCES,
    chain_type_kwargs={
        "prompt": prompt,
    },
)

class Predict(BaseModel):
    prompt: str


app = FastAPI()

@app.get("/")
def root():
    return {"API": "An API for Sepsis Prediction."}

# app.mount("/static", StaticFiles(directory="static"), name="static")

@app.post('/predict')
async def predict(data: Predict):
    user_prompt = data.prompt
    if user_prompt:
        # print(f'User Prompt: {user_prompt}')
        # Get the answer from the chain
        res = QA(user_prompt)
        answer, docs = res["result"], res["source_documents"]

        prompt_response_dict = {
            "Prompt": user_prompt,
            "Answer": answer,
        }

        prompt_response_dict["Sources"] = []
        for document in docs:
            prompt_response_dict["Sources"].append(
                (os.path.basename(str(document.metadata["source"])), str(document.page_content))
            )

        return {"response": prompt_response_dict}
    else:
        raise HTTPException(status_code=400, detail="Prompt Incorrect")

@app.get("/run_ingest")
def run_ingest_route():
    try:
        if os.path.exists(PERSIST_DIRECTORY):
            try:
                shutil.rmtree(PERSIST_DIRECTORY)
            except OSError as e:
                raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
        else:
            raise HTTPException(status_code=500, detail="The directory does not exist")

        run_langest_commands = ["python", "ingest.py"]
        if DEVICE_TYPE == "cpu":
            run_langest_commands.append("--device_type")
            run_langest_commands.append(DEVICE_TYPE)

        result = subprocess.run(run_langest_commands, capture_output=True)
        
        if result.returncode != 0:
            raise HTTPException(status_code=400, detail="Script execution failed: {}")
            
        # load the vectorstore
        DB = Chroma(
            persist_directory=PERSIST_DIRECTORY,
            embedding_function=EMBEDDINGS,
            client_settings=CHROMA_SETTINGS,
        )
        RETRIEVER = DB.as_retriever()
        prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False)

        QA = RetrievalQA.from_chain_type(
            llm=LLM,
            chain_type="stuff",
            retriever=RETRIEVER,
            return_source_documents=SHOW_SOURCES,
            chain_type_kwargs={
                "prompt": prompt,
            },
        )

        response = "Script executed successfully: {}".format(result.stdout.decode("utf-8"))
        return {"response": response}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")