katara / main.py
Daniel Marques
feat: add websocket
b0d4d1d
raw
history blame
8.48 kB
import os
import glob
import shutil
import subprocess
import torch
import json
from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect
from fastapi.staticfiles import StaticFiles
from websocket.socketManager import WebSocketManager
from pydantic import BaseModel
# langchain
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import LLMResult
from langchain.vectorstores import Chroma
from prompt_template_utils import get_prompt_template
from load_models import load_model
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES, CONTEXT_WINDOW_SIZE, MAX_NEW_TOKENS
class Predict(BaseModel):
prompt: str
class Delete(BaseModel):
filename: str
if torch.backends.mps.is_available():
DEVICE_TYPE = "mps"
elif torch.cuda.is_available():
DEVICE_TYPE = "cuda"
else:
DEVICE_TYPE = "cpu"
EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE})
DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS)
RETRIEVER = DB.as_retriever()
LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True)
prompt, memory = get_prompt_template(promptTemplate_type="llama", history=True)
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
def sendPromptChain(QA, user_prompt):
res = QA(user_prompt)
answer, docs = res["result"], res["source_documents"]
prompt_response_dict = {
"Prompt": user_prompt,
"Answer": answer,
}
prompt_response_dict["Sources"] = []
for document in docs:
prompt_response_dict["Sources"].append(
(os.path.basename(str(document.metadata["source"])), str(document.page_content))
)
return prompt_response_dict;
socket_manager = WebSocketManager()
app = FastAPI(title="homepage-app")
api_app = FastAPI(title="api app")
app.mount("/api", api_app, name="api")
app.mount("/", StaticFiles(directory="static",html = True), name="static")
@api_app.get("/training")
def run_ingest_route():
global DB
global RETRIEVER
global QA
try:
if os.path.exists(PERSIST_DIRECTORY):
try:
shutil.rmtree(PERSIST_DIRECTORY)
except OSError as e:
raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.")
else:
raise HTTPException(status_code=500, detail="The directory does not exist")
run_langest_commands = ["python", "ingest.py"]
if DEVICE_TYPE == "cpu":
run_langest_commands.append("--device_type")
run_langest_commands.append(DEVICE_TYPE)
result = subprocess.run(run_langest_commands, capture_output=True)
if result.returncode != 0:
raise HTTPException(status_code=400, detail="Script execution failed: {}")
# load the vectorstore
DB = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=EMBEDDINGS,
client_settings=CHROMA_SETTINGS,
)
RETRIEVER = DB.as_retriever()
QA = RetrievalQA.from_chain_type(
llm=LLM,
chain_type="stuff",
retriever=RETRIEVER,
return_source_documents=SHOW_SOURCES,
chain_type_kwargs={
"prompt": prompt,
"memory": memory
},
)
return {"response": "The training was successfully completed"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.get("/api/files")
def get_files():
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
files = glob.glob(os.path.join(upload_dir, '*'))
return {"directory": upload_dir, "files": files}
@api_app.delete("/api/delete_document")
def delete_source_route(data: Delete):
filename = data.filename
path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
file_to_delete = f"{path_source_documents}/{filename}"
if os.path.exists(file_to_delete):
try:
os.remove(file_to_delete)
print(f"{file_to_delete} has been deleted.")
return {"message": f"{file_to_delete} has been deleted."}
except OSError as e:
raise HTTPException(status_code=400, detail=print(f"error: {e}."))
else:
raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist."))
@api_app.post('/predict')
def predict(data: Predict):
global QA
try:
user_prompt = data.prompt
if user_prompt:
prompt_response_dict = sendPromptChain(QA, user_prompt)
return {"response": prompt_response_dict}
else:
raise HTTPException(status_code=400, detail="Prompt Incorrect")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")
@api_app.post("/save_document/")
async def create_upload_file(file: UploadFile):
# Get the file size (in bytes)
file.file.seek(0, 2)
file_size = file.file.tell()
# move the cursor back to the beginning
await file.seek(0)
if file_size > 10 * 1024 * 1024:
# more than 10 MB
raise HTTPException(status_code=400, detail="File too large")
content_type = file.content_type
if content_type not in [
"text/plain",
"text/markdown",
"text/x-markdown",
"text/csv",
"application/msword",
"application/pdf",
"application/vnd.ms-excel",
"application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/x-python",
"application/x-python-code"]:
raise HTTPException(status_code=400, detail="Invalid file type")
upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY)
if not os.path.exists(upload_dir):
os.makedirs(upload_dir)
dest = os.path.join(upload_dir, file.filename)
with open(dest, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
return {"filename": file.filename}
@api_app.websocket("/ws/{user_id}")
async def websocket_endpoint_student(websocket: WebSocket, user_id: str):
global QA
message = {
"message": f"Student {user_id} connected"
}
await socket_manager.add_user_to_room(user_id, websocket)
await socket_manager.broadcast_to_room(user_id, json.dumps(message))
try:
while True:
data = await websocket.receive_text()
prompt_response_dict = sendPromptChain(QA, data)
await socket_manager.broadcast_to_room(user_id, json.dumps(prompt_response_dict))
except WebSocketDisconnect:
await socket_manager.remove_user_from_room(user_id, websocket)
message = {
"message": f"Student {user_id} disconnected"
}
await socket_manager.broadcast_to_room(user_id, json.dumps(message))
except RuntimeError as error:
print(error)
@api_app.websocket("/ws/{room_id}/{user_id}")
async def websocket_endpoint_room(websocket: WebSocket, room_id: str, user_id: str):
global QA
message = {
"message": f"Student {user_id} connected to the classroom"
}
await socket_manager.add_user_to_room(room_id, websocket)
await socket_manager.broadcast_to_room(room_id, json.dumps(message))
try:
while True:
data = await websocket.receive_text()
prompt_response_dict = sendPromptChain(QA, data)
await socket_manager.broadcast_to_room(room_id, json.dumps(prompt_response_dict))
except WebSocketDisconnect:
await socket_manager.remove_user_from_room(room_id, websocket)
message = {
"message": f"Student {user_id} disconnected from room - {room_id}"
}
await socket_manager.broadcast_to_room(room_id, json.dumps(message))
except RuntimeError as error:
print(error)