Spaces:
Paused
Paused
import logging | |
import os | |
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed | |
import click | |
import torch | |
from langchain.docstore.document import Document | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from constants import ( | |
CHROMA_SETTINGS, | |
DOCUMENT_MAP, | |
EMBEDDING_MODEL_NAME, | |
INGEST_THREADS, | |
PERSIST_DIRECTORY, | |
SOURCE_DIRECTORY, | |
) | |
def load_single_document(file_path: str) -> Document: | |
# Loads a single document from a file path | |
file_extension = os.path.splitext(file_path)[1] | |
loader_class = DOCUMENT_MAP.get(file_extension) | |
if loader_class: | |
loader = loader_class(file_path) | |
else: | |
raise ValueError("Document type is undefined") | |
return loader.load()[0] | |
def load_document_batch(filepaths): | |
logging.info("Loading document batch") | |
# create a thread pool | |
with ThreadPoolExecutor(len(filepaths)) as exe: | |
# load files | |
futures = [exe.submit(load_single_document, name) for name in filepaths] | |
# collect data | |
data_list = [future.result() for future in futures] | |
# return data and file paths | |
return (data_list, filepaths) | |
def load_documents(source_dir: str) -> list[Document]: | |
# Loads all documents from the source documents directory, including nested folders | |
paths = [] | |
for root, _, files in os.walk(source_dir): | |
for file_name in files: | |
file_extension = os.path.splitext(file_name)[1] | |
source_file_path = os.path.join(root, file_name) | |
if file_extension in DOCUMENT_MAP.keys(): | |
paths.append(source_file_path) | |
# Have at least one worker and at most INGEST_THREADS workers | |
n_workers = min(INGEST_THREADS, max(len(paths), 1)) | |
chunksize = round(len(paths) / n_workers) | |
docs = [] | |
with ProcessPoolExecutor(n_workers) as executor: | |
futures = [] | |
# split the load operations into chunks | |
for i in range(0, len(paths), chunksize): | |
# select a chunk of filenames | |
filepaths = paths[i : (i + chunksize)] | |
# submit the task | |
future = executor.submit(load_document_batch, filepaths) | |
futures.append(future) | |
# process all results | |
for future in as_completed(futures): | |
# open the file and load the data | |
contents, _ = future.result() | |
docs.extend(contents) | |
return docs | |
def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]: | |
# Splits documents for correct Text Splitter | |
text_docs, python_docs = [], [] | |
for doc in documents: | |
file_extension = os.path.splitext(doc.metadata["source"])[1] | |
if file_extension == ".py": | |
python_docs.append(doc) | |
else: | |
text_docs.append(doc) | |
return text_docs, python_docs | |
def main(device_type): | |
# Load documents and split in chunks | |
logging.info(f"Loading documents from {SOURCE_DIRECTORY}") | |
documents = load_documents(SOURCE_DIRECTORY) | |
text_documents, python_documents = split_documents(documents) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
python_splitter = RecursiveCharacterTextSplitter.from_language( | |
language=Language.PYTHON, chunk_size=1000, chunk_overlap=200 | |
) | |
texts = text_splitter.split_documents(text_documents) | |
texts.extend(python_splitter.split_documents(python_documents)) | |
logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}") | |
logging.info(f"Split into {len(texts)} chunks of text") | |
# Create embeddings | |
embeddings = HuggingFaceInstructEmbeddings( | |
model_name=EMBEDDING_MODEL_NAME, | |
model_kwargs={"device": device_type}, | |
) | |
# change the embedding type here if you are running into issues. | |
# These are much smaller embeddings and will work for most appications | |
# If you use HuggingFaceEmbeddings, make sure to also use the same in the | |
# run_localGPT.py file. | |
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) | |
db = Chroma.from_documents( | |
texts, | |
embeddings, | |
persist_directory=PERSIST_DIRECTORY, | |
client_settings=CHROMA_SETTINGS, | |
) | |
db.persist() | |
db = None | |
if __name__ == "__main__": | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO | |
) | |
main() | |
# run_localGPT_API.main() | |
# localGPTUI.main() | |