from fastapi import FastAPI, HTTPException from fastapi.staticfiles import StaticFiles from pydantic import BaseModel import pickle import uvicorn import logging import os import shutil import subprocess import torch from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceInstructEmbeddings # from langchain.embeddings import HuggingFaceEmbeddings from run_localGPT import load_model from prompt_template_utils import get_prompt_template # from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from werkzeug.utils import secure_filename from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME if torch.backends.mps.is_available(): DEVICE_TYPE = "mps" elif torch.cuda.is_available(): DEVICE_TYPE = "cuda" else: DEVICE_TYPE = "cpu" SHOW_SOURCES = True logging.info(f"Running on: {DEVICE_TYPE}") logging.info(f"Display Source Documents set to: {SHOW_SOURCES}") EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE}) # load the vectorstore DB = Chroma( persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS, ) RETRIEVER = DB.as_retriever() LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME) prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False) QA = RetrievalQA.from_chain_type( llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES, chain_type_kwargs={ "prompt": prompt, }, ) class Predict(BaseModel): prompt: str app = FastAPI() @app.get("/") def root(): return {"API": "An API for Sepsis Prediction."} # app.mount("/static", StaticFiles(directory="static"), name="static") @app.post('/predict') async def predict(data: Predict): user_prompt = data.prompt if user_prompt: # print(f'User Prompt: {user_prompt}') # Get the answer from the chain res = QA(user_prompt) answer, docs = res["result"], res["source_documents"] prompt_response_dict = { "Prompt": user_prompt, "Answer": answer, } prompt_response_dict["Sources"] = [] for document in docs: prompt_response_dict["Sources"].append( (os.path.basename(str(document.metadata["source"])), str(document.page_content)) ) return {"response": prompt_response_dict} else: raise HTTPException(status_code=400, detail="Prompt Incorrect") @app.get("/run_ingest") def run_ingest_route(): try: if os.path.exists(PERSIST_DIRECTORY): try: shutil.rmtree(PERSIST_DIRECTORY) except OSError as e: raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.") else: raise HTTPException(status_code=500, detail="The directory does not exist") run_langest_commands = ["python", "ingest.py"] if DEVICE_TYPE == "cpu": run_langest_commands.append("--device_type") run_langest_commands.append(DEVICE_TYPE) result = subprocess.run(run_langest_commands, capture_output=True) if result.returncode != 0: raise HTTPException(status_code=400, detail="Script execution failed: {}") # load the vectorstore DB = Chroma( persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS, ) RETRIEVER = DB.as_retriever() prompt, memory = get_prompt_template(promptTemplate_type="llama", history=False) QA = RetrievalQA.from_chain_type( llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES, chain_type_kwargs={ "prompt": prompt, }, ) response = "Script executed successfully: {}".format(result.stdout.decode("utf-8")) return {"response": response} except Exception as e: raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}")