from typing import Any, Dict, Union import os import glob import shutil import subprocess import torch from fastapi import FastAPI, HTTPException, UploadFile, WebSocket, WebSocketDisconnect from fastapi.staticfiles import StaticFiles from pydantic import BaseModel # langchain from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.callbacks.base import BaseCallbackHandler from langchain.schema import LLMResult from langchain.vectorstores import Chroma from prompt_template_utils import get_prompt_template from load_models import load_model from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME, PATH_NAME_SOURCE_DIRECTORY, SHOW_SOURCES class Predict(BaseModel): prompt: str class Delete(BaseModel): filename: str if torch.backends.mps.is_available(): DEVICE_TYPE = "mps" elif torch.cuda.is_available(): DEVICE_TYPE = "cuda" else: DEVICE_TYPE = "cpu" EMBEDDINGS = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": DEVICE_TYPE}) DB = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS) RETRIEVER = DB.as_retriever() LLM = load_model(device_type=DEVICE_TYPE, model_id=MODEL_ID, model_basename=MODEL_BASENAME, stream=True, callbacks=[]) prompt, memory = get_prompt_template(promptTemplate_type="llama", history=True) QA = RetrievalQA.from_chain_type( llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES, chain_type_kwargs={ "prompt": prompt, "memory": memory }, ) app = FastAPI(title="homepage-app") api_app = FastAPI(title="api app") app.mount("/api", api_app, name="api") app.mount("/", StaticFiles(directory="static",html = True), name="static") @api_app.get("/training") def run_ingest_route(): global DB global RETRIEVER global QA try: if os.path.exists(PERSIST_DIRECTORY): try: shutil.rmtree(PERSIST_DIRECTORY) except OSError as e: raise HTTPException(status_code=500, detail=f"Error: {e.filename} - {e.strerror}.") else: raise HTTPException(status_code=500, detail="The directory does not exist") run_langest_commands = ["python", "ingest.py"] if DEVICE_TYPE == "cpu": run_langest_commands.append("--device_type") run_langest_commands.append(DEVICE_TYPE) result = subprocess.run(run_langest_commands, capture_output=True) if result.returncode != 0: raise HTTPException(status_code=400, detail="Script execution failed: {}") # load the vectorstore DB = Chroma( persist_directory=PERSIST_DIRECTORY, embedding_function=EMBEDDINGS, client_settings=CHROMA_SETTINGS, ) RETRIEVER = DB.as_retriever() QA = RetrievalQA.from_chain_type( llm=LLM, chain_type="stuff", retriever=RETRIEVER, return_source_documents=SHOW_SOURCES, chain_type_kwargs={ "prompt": prompt, "memory": memory }, ) return {"response": "The training was successfully completed"} except Exception as e: raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}") @api_app.get("/api/files") def get_files(): upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY) files = glob.glob(os.path.join(upload_dir, '*')) return {"directory": upload_dir, "files": files} @api_app.delete("/api/delete_document") def delete_source_route(data: Delete): filename = data.filename path_source_documents = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY) file_to_delete = f"{path_source_documents}/{filename}" if os.path.exists(file_to_delete): try: os.remove(file_to_delete) print(f"{file_to_delete} has been deleted.") return {"message": f"{file_to_delete} has been deleted."} except OSError as e: raise HTTPException(status_code=400, detail=print(f"error: {e}.")) else: raise HTTPException(status_code=400, detail=print(f"The file {file_to_delete} does not exist.")) @api_app.post('/predict') def predict(data: Predict): global QA try: user_prompt = data.prompt if user_prompt: res = QA(user_prompt) answer, docs = res["result"], res["source_documents"] prompt_response_dict = { "Prompt": user_prompt, "Answer": answer, } prompt_response_dict["Sources"] = [] for document in docs: prompt_response_dict["Sources"].append( (os.path.basename(str(document.metadata["source"])), str(document.page_content)) ) return {"response": prompt_response_dict} else: raise HTTPException(status_code=400, detail="Prompt Incorrect") except Exception as e: raise HTTPException(status_code=500, detail=f"Error occurred: {str(e)}") @api_app.post("/save_document/") async def create_upload_file(file: UploadFile): # Get the file size (in bytes) file.file.seek(0, 2) file_size = file.file.tell() # move the cursor back to the beginning await file.seek(0) if file_size > 10 * 1024 * 1024: # more than 10 MB raise HTTPException(status_code=400, detail="File too large") content_type = file.content_type if content_type not in [ "text/plain", "text/markdown", "text/x-markdown", "text/csv", "application/msword", "application/pdf", "application/vnd.ms-excel", "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "text/x-python", "application/x-python-code"]: raise HTTPException(status_code=400, detail="Invalid file type") upload_dir = os.path.join(os.getcwd(), PATH_NAME_SOURCE_DIRECTORY) if not os.path.exists(upload_dir): os.makedirs(upload_dir) dest = os.path.join(upload_dir, file.filename) with open(dest, "wb") as buffer: shutil.copyfileobj(file.file, buffer) return {"filename": file.filename} @api_app.websocket("/ws/{client_id}") async def websocket_endpoint(websocket: WebSocket, client_id: int): global QA await websocket.accept() try: while True: prompt = await websocket.receive_text() response = QA(inputs=prompt, return_only_outputs=True, tags=f'{client_id}', include_run_info=True) await websocket.send_text(f'{response}') except WebSocketDisconnect: print('disconnect') except RuntimeError as error: print(error)