Spaces:
Runtime error
Runtime error
import streamlit as st | |
import transformers | |
import tensorflow | |
import PIL | |
from PIL import Image | |
import time | |
from transformers import pipeline | |
model_checkpoint = "Modfiededition/t5-base-fine-tuned-on-jfleg" | |
# @st.cache_(allow_output_mutation=True, suppress_st_warning=True) | |
def load_model(): | |
return pipeline("text2text-generation", model=model_checkpoint) | |
model = load_model() | |
#prompts | |
st.title("Writing Assistant for you 🤖") | |
st.markdown("This writing assistant detects and corrects grammatical mistakes for you! This assitant uses **T5-base model ✍️** fine-tuned on jfleg dataset.") | |
#image = Image.open('new_grammar.jpg') | |
#st.image(image, caption='Image Credit: https://abrc.org.au/wp-content/uploads/2020/12/Grammar-checker.jpg') | |
st.subheader("Some examples: ") | |
example_1 = st.button("I am write on AI") | |
example_2 = st.button("This sentence has, bads grammar mistake!") | |
textbox = st.text_area('Write your text in this box:', '',height=100, max_chars=500 ) | |
button = st.button('Detect grammar mistakes:') | |
# output | |
st.subheader("Correct sentence: ") | |
if example_1: | |
with st.spinner('In progress.......'): | |
output_text = model("I am write on AI")[0]["generated_text"] | |
st.markdown("## "+output_text) | |
if example_2: | |
with st.spinner('In progress.......'): | |
output_text = model("This sentence has, bads grammar mistake!")[0]["generated_text"] | |
st.markdown("## "+output_text) | |
if button: | |
with st.spinner('In progress.......'): | |
if textbox: | |
output_text = model(textbox)[0]["generated_text"] | |
else: | |
output_text = " " | |
st.markdown("## "+output_text) |