Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, VitsModel | |
from transformers import pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Translate audio to russian text | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device) | |
translator_to_ru = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") | |
def translate(audio, translator_to_ru: pipeline = translator_to_ru): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return translator_to_ru(outputs['text'])[0]['translation_text'] | |
# Text to russian speech | |
model = VitsModel.from_pretrained("facebook/mms-tts-rus") | |
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus") | |
def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model): | |
inputs = tokenizer(text, return_tensors="pt") | |
# print(inputs) | |
with torch.no_grad(): | |
output = model(**inputs).waveform | |
return output.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech[0] | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's | |
[mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./test_2.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() | |