dmccreary commited on
Commit
d2b8843
·
1 Parent(s): 6332c07

Create new file

Browse files
Files changed (1) hide show
  1. app.py +223 -0
app.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system("git clone --recursive https://github.com/JD-P/cloob-latent-diffusion")
4
+ os.system("cd cloob-latent-diffusion;pip install omegaconf pillow pytorch-lightning einops wandb ftfy regex ./CLIP")
5
+
6
+ import argparse
7
+ from functools import partial
8
+ from pathlib import Path
9
+ import sys
10
+ sys.path.append('./cloob-latent-diffusion')
11
+ sys.path.append('./cloob-latent-diffusion/cloob-training')
12
+ sys.path.append('./cloob-latent-diffusion/latent-diffusion')
13
+ sys.path.append('./cloob-latent-diffusion/taming-transformers')
14
+ sys.path.append('./cloob-latent-diffusion/v-diffusion-pytorch')
15
+ from omegaconf import OmegaConf
16
+ from PIL import Image
17
+ import torch
18
+ from torch import nn
19
+ from torch.nn import functional as F
20
+ from torchvision import transforms
21
+ from torchvision.transforms import functional as TF
22
+ from tqdm import trange
23
+ from CLIP import clip
24
+ from cloob_training import model_pt, pretrained
25
+ import ldm.models.autoencoder
26
+ from diffusion import sampling, utils
27
+ import train_latent_diffusion as train
28
+ from huggingface_hub import hf_hub_url, cached_download
29
+ import random
30
+
31
+ # Download the model files
32
+ checkpoint = cached_download(hf_hub_url("huggan/distill-ccld-wa", filename="model_student.ckpt"))
33
+ ae_model_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.ckpt"))
34
+ ae_config_path = cached_download(hf_hub_url("huggan/ccld_wa", filename="ae_model.yaml"))
35
+
36
+ # Define a few utility functions
37
+
38
+ def parse_prompt(prompt, default_weight=3.):
39
+ if prompt.startswith('http://') or prompt.startswith('https://'):
40
+ vals = prompt.rsplit(':', 2)
41
+ vals = [vals[0] + ':' + vals[1], *vals[2:]]
42
+ else:
43
+ vals = prompt.rsplit(':', 1)
44
+ vals = vals + ['', default_weight][len(vals):]
45
+ return vals[0], float(vals[1])
46
+
47
+
48
+ def resize_and_center_crop(image, size):
49
+ fac = max(size[0] / image.size[0], size[1] / image.size[1])
50
+ image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
51
+ return TF.center_crop(image, size[::-1])
52
+
53
+
54
+ # Load the models
55
+ device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
56
+ print('Using device:', device)
57
+ print('loading models')
58
+
59
+ # autoencoder
60
+ ae_config = OmegaConf.load(ae_config_path)
61
+ ae_model = ldm.models.autoencoder.AutoencoderKL(**ae_config.model.params)
62
+ ae_model.eval().requires_grad_(False).to(device)
63
+ ae_model.load_state_dict(torch.load(ae_model_path))
64
+ n_ch, side_y, side_x = 4, 32, 32
65
+
66
+ # diffusion model
67
+ model = train.DiffusionModel(192, [1,1,2,2], autoencoder_scale=torch.tensor(4.3084))
68
+ model.load_state_dict(torch.load(checkpoint, map_location='cpu'))
69
+ model = model.to(device).eval().requires_grad_(False)
70
+
71
+ # CLOOB
72
+ cloob_config = pretrained.get_config('cloob_laion_400m_vit_b_16_16_epochs')
73
+ cloob = model_pt.get_pt_model(cloob_config)
74
+ checkpoint = pretrained.download_checkpoint(cloob_config)
75
+ cloob.load_state_dict(model_pt.get_pt_params(cloob_config, checkpoint))
76
+ cloob.eval().requires_grad_(False).to(device)
77
+
78
+
79
+ # The key function: returns a list of n PIL images
80
+ def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15,
81
+ method='plms', eta=None):
82
+ zero_embed = torch.zeros([1, cloob.config['d_embed']], device=device)
83
+ target_embeds, weights = [zero_embed], []
84
+
85
+ for prompt in prompts:
86
+ txt, weight = parse_prompt(prompt)
87
+ target_embeds.append(cloob.text_encoder(cloob.tokenize(txt).to(device)).float())
88
+ weights.append(weight)
89
+
90
+ for prompt in images:
91
+ path, weight = parse_prompt(prompt)
92
+ img = Image.open(utils.fetch(path)).convert('RGB')
93
+ clip_size = cloob.config['image_encoder']['image_size']
94
+ img = resize_and_center_crop(img, (clip_size, clip_size))
95
+ batch = TF.to_tensor(img)[None].to(device)
96
+ embed = F.normalize(cloob.image_encoder(cloob.normalize(batch)).float(), dim=-1)
97
+ target_embeds.append(embed)
98
+ weights.append(weight)
99
+
100
+ weights = torch.tensor([1 - sum(weights), *weights], device=device)
101
+
102
+ torch.manual_seed(seed)
103
+
104
+ def cfg_model_fn(x, t):
105
+ n = x.shape[0]
106
+ n_conds = len(target_embeds)
107
+ x_in = x.repeat([n_conds, 1, 1, 1])
108
+ t_in = t.repeat([n_conds])
109
+ clip_embed_in = torch.cat([*target_embeds]).repeat_interleave(n, 0)
110
+ vs = model(x_in, t_in, clip_embed_in).view([n_conds, n, *x.shape[1:]])
111
+ v = vs.mul(weights[:, None, None, None, None]).sum(0)
112
+ return v
113
+
114
+ def run(x, steps):
115
+ if method == 'ddpm':
116
+ return sampling.sample(cfg_model_fn, x, steps, 1., {})
117
+ if method == 'ddim':
118
+ return sampling.sample(cfg_model_fn, x, steps, eta, {})
119
+ if method == 'prk':
120
+ return sampling.prk_sample(cfg_model_fn, x, steps, {})
121
+ if method == 'plms':
122
+ return sampling.plms_sample(cfg_model_fn, x, steps, {})
123
+ if method == 'pie':
124
+ return sampling.pie_sample(cfg_model_fn, x, steps, {})
125
+ if method == 'plms2':
126
+ return sampling.plms2_sample(cfg_model_fn, x, steps, {})
127
+ assert False
128
+
129
+ batch_size = n
130
+ x = torch.randn([n, n_ch, side_y, side_x], device=device)
131
+ t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
132
+ steps = utils.get_spliced_ddpm_cosine_schedule(t)
133
+ pil_ims = []
134
+ for i in trange(0, n, batch_size):
135
+ cur_batch_size = min(n - i, batch_size)
136
+ out_latents = run(x[i:i+cur_batch_size], steps)
137
+ outs = ae_model.decode(out_latents * torch.tensor(2.55).to(device))
138
+ for j, out in enumerate(outs):
139
+ pil_ims.append(utils.to_pil_image(out))
140
+
141
+ return pil_ims
142
+
143
+
144
+ import gradio as gr
145
+
146
+ def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
147
+ if seed == None :
148
+ seed = random.randint(0, 10000)
149
+ print( prompt, im_prompt, seed, n_steps)
150
+ prompts = [prompt]
151
+ im_prompts = []
152
+ if im_prompt != None:
153
+ im_prompts = [im_prompt]
154
+ pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
155
+ return pil_ims[0]
156
+
157
+ iface = gr.Interface(fn=gen_ims,
158
+ inputs=[#gr.inputs.Slider(minimum=1, maximum=1, step=1, default=1,label="Number of images"),
159
+ #gr.inputs.Slider(minimum=0, maximum=200, step=1, label='Random seed', default=0),
160
+ gr.inputs.Textbox(label="Text prompt"),
161
+ gr.inputs.Image(optional=True, label="Image prompt", type='filepath'),
162
+ #gr.inputs.Slider(minimum=10, maximum=35, step=1, default=15,label="Number of steps")
163
+ ],
164
+ outputs=[gr.outputs.Image(type="pil", label="Generated Image")],
165
+ examples=[
166
+ ["Futurism, in the style of Wassily Kandinsky"],
167
+ ["Art Nouveau, in the style of John Singer Sargent"],
168
+ ["Surrealism, in the style of Edgar Degas"],
169
+ ["Expressionism, in the style of Wassily Kandinsky"],
170
+ ["Futurism, in the style of Egon Schiele"],
171
+ ["Neoclassicism, in the style of Gustav Klimt"],
172
+ ["Cubism, in the style of Gustav Klimt"],
173
+ ["Op Art, in the style of Marc Chagall"],
174
+ ["Romanticism, in the style of M.C. Escher"],
175
+ ["Futurism, in the style of M.C. Escher"],
176
+ ["Abstract Art, in the style of M.C. Escher"],
177
+ ["Mannerism, in the style of Paul Klee"],
178
+ ["Romanesque Art, in the style of Leonardo da Vinci"],
179
+ ["High Renaissance, in the style of Rembrandt"],
180
+ ["Magic Realism, in the style of Gustave Dore"],
181
+ ["Realism, in the style of Jean-Michel Basquiat"],
182
+ ["Art Nouveau, in the style of Paul Gauguin"],
183
+ ["Avant-garde, in the style of Pierre-Auguste Renoir"],
184
+ ["Baroque, in the style of Edward Hopper"],
185
+ ["Post-Impressionism, in the style of Wassily Kandinsky"],
186
+ ["Naturalism, in the style of Rene Magritte"],
187
+ ["Constructivism, in the style of Paul Cezanne"],
188
+ ["Abstract Expressionism, in the style of Henri Matisse"],
189
+ ["Pop Art, in the style of Vincent van Gogh"],
190
+ ["Futurism, in the style of Wassily Kandinsky"],
191
+ ["Futurism, in the style of Zdzislaw Beksinski"],
192
+ ['Surrealism, in the style of Salvador Dali'],
193
+ ["Aaron Wacker, oil on canvas"],
194
+ ["abstract"],
195
+ ["landscape"],
196
+ ["portrait"],
197
+ ["sculpture"],
198
+ ["genre painting"],
199
+ ["installation"],
200
+ ["photo"],
201
+ ["figurative"],
202
+ ["illustration"],
203
+ ["still life"],
204
+ ["history painting"],
205
+ ["cityscape"],
206
+ ["marina"],
207
+ ["animal painting"],
208
+ ["design"],
209
+ ["calligraphy"],
210
+ ["symbolic painting"],
211
+ ["graffiti"],
212
+ ["performance"],
213
+ ["mythological painting"],
214
+ ["battle painting"],
215
+ ["self-portrait"],
216
+ ["Impressionism, oil on canvas"]
217
+ ],
218
+ title='Art Generator and Style Mixer from 🧠 Cloob and 🎨 WikiArt - Visual Art Encyclopedia:',
219
+ description="Trained on images from the [WikiArt](https://www.wikiart.org/) dataset, comprised of visual arts",
220
+ article = 'Model used is: [model card](https://huggingface.co/huggan/distill-ccld-wa)..'
221
+
222
+ )
223
+ iface.launch(enable_queue=True) # , debug=True for colab debugging