File size: 12,115 Bytes
04ffec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import util
import numpy as np
import librosa
import hashlib
import json
import os
import torch
import logging
from rvc.infer_pack.models import (
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono
)
from os import getenv
from typing import Union, Tuple, List
from rvc.vc_infer_pipeline import VC
from speakers.processors import BaseProcessor, ProcessorData
from speakers.common.utils import get_abs_path
from omegaconf import OmegaConf
from speakers.common.registry import registry
from pydantic import Field

logger = logging.getLogger('speaker_runner')


def set_rvc_speakers_logger(l):
    global logger
    logger = l


class RvcProcessorData(ProcessorData):
    """
        # https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118  # noqa
    :param f0_up_key:  变调(整数, 半音数量, 升八度12降八度-12)
    :param input_audio:
    :param f0_file:  F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调
    :param protect: 保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果
    :param model_index:
    :param f0_method:
    :param index_rate: 检索特征占比
    :param filter_radius: >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音
    :param rms_mix_rate: 输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络
    :param resample_sr: 后处理重采样至最终采样率,0为不进行重采样
    :return:
    """
    sample_rate: int = Field(
        default=0
    )
    audio_samples: List[float] = Field(
        default=[]
    )

    model_index: int

    """ 变调(整数, 半音数量, 升八度12降八度-12)"""
    f0_up_key: int

    """ F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"""
    f0_method: str

    """检索特征占比"""
    index_rate: float
    """ >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"""
    filter_radius: int
    """输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"""
    rms_mix_rate: float
    """后处理重采样至最终采样率,0为不进行重采样"""
    resample_sr: int
    """保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"""
    protect: float = Field(
        default=0.33
    )
    f0_file: str = Field(
        default=None
    )

    @property
    def type(self) -> str:
        """Type of the Message, used for serialization."""
        return "RVC"


@registry.register_processor("rvc_speakers")
class RVCSpeakers(BaseProcessor):
    """
    音频处理器有抽象处理器Processor,通过单独的Processor配置,预加载音频处理器,
    不同的处理器有着特定人物的说话风格与配置参数
    """

    def __init__(self, hubert_model_path: str, rvc_config_file: str):
        # Reference: https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L21  # noqa
        self.in_hf_space = getenv('SYSTEM') == 'spaces'
        self._loaded_models = []
        self._load_hubert(hubert_model_path=hubert_model_path)
        self._load_rvc_mode(rvc_config_file=rvc_config_file)

    def __call__(
            self,
            data: RvcProcessorData
    ):
        # 将 Python 列表转换为 NumPy 数组
        audio_samples_np = np.array(data.audio_samples, dtype=np.float32)
        input_audio = (data.sample_rate, audio_samples_np)

        return self.vc_func(input_audio=input_audio,
                            model_index=data.model_index,
                            f0_up_key=data.f0_up_key,
                            f0_method=data.f0_method,
                            index_rate=data.index_rate,
                            filter_radius=data.filter_radius,
                            rms_mix_rate=data.rms_mix_rate,
                            resample_sr=data.resample_sr,
                            protect=data.protect,
                            f0_file=data.f0_file)

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            raise RuntimeError("from_config cfg is None.")

        hubert_model_path = cfg.get("hubert_model_path", "")
        rvc_config_file = cfg.get("rvc_config_file", "")

        return cls(hubert_model_path=os.path.join(registry.get_path("rvc_library_root"),
                                                  hubert_model_path),
                   rvc_config_file=os.path.join(registry.get_path("rvc_library_root"),
                                                rvc_config_file))

    def match(self, data: ProcessorData):
        return "RVC" in data.type

    @property
    def loaded_models(self):
        return self._loaded_models

    def _load_hubert(self, hubert_model_path: str):

        # Load hubert model
        logger.info(f'Load hubert model{hubert_model_path}')
        self.hubert_model = util.load_hubert_model(registry.get("device"), model_path=hubert_model_path)
        self.hubert_model.eval()
        logger.info('Loaded hubert model')

    def _load_rvc_mode(self, rvc_config_file: str):
        """
        模型配置加载
        :param rvc_config_file:
        :return:
        """

        # Load models
        logger.info(f'Models Load:rvc_speakers')
        multi_cfg = OmegaConf.load(get_abs_path(rvc_config_file))
        rmvpe_path = os.path.join(registry.get_path("rvc_library_root"), multi_cfg.get("rmvpe_path"))
        logger.info(f'rmvpe_path:{rmvpe_path}')
        for item in multi_cfg.get('models'):
            for key, model_info in item.items():  # 使用 .items() 方法获取键值对

                logger.info(f'Loading model: {key}')
                model_name = model_info.get("model_name")
                # Load model info
                model_info_config_file = os.path.join(registry.get_path("rvc_library_root"),
                                                      model_info.get("path"),
                                                      'config.json')

                logger.info(f'Loading model model_info_config_file: {model_info_config_file}')
                model_info_config = json.load(open(model_info_config_file, 'r'))

                # Load RVC checkpoint
                torch_file = os.path.join(registry.get_path("rvc_library_root"),
                                          model_info.get("path"),
                                          model_info_config['model'])
                cpt = torch.load(
                    torch_file,
                    map_location='cpu'
                )
                tgt_sr = cpt['config'][-1]
                cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0]  # n_spk

                if_f0 = cpt.get('f0', 1)
                net_g: Union[SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono]
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt['config'],
                        is_half=util.is_half(registry.get("device"))
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])

                del net_g.enc_q

                # According to original code, this thing seems necessary.
                logger.info(net_g.load_state_dict(cpt['weight'], strict=False))

                net_g.eval().to(registry.get("device"))
                net_g = net_g.half() if util.is_half(registry.get("device")) else net_g.float()

                vc = VC(tgt_sr,
                        registry.get("x_pad"),
                        registry.get("x_query"),
                        registry.get("x_center"),
                        registry.get("x_max"),
                        registry.get("is_half"),
                        registry.get("device"),
                        rmvpe_path=rmvpe_path
                        )

                self._loaded_models.append(dict(
                    name=model_name,
                    metadata=model_info_config,
                    vc=vc,
                    net_g=net_g,
                    if_f0=if_f0,
                    target_sr=tgt_sr
                ))

        logger.info(f'Models loaded:rvc_speakers, len:{len(self._loaded_models)}')

    def vc_func(
            self,
            input_audio: Tuple[int, np.ndarray], model_index, f0_up_key, f0_method: str, index_rate,
            filter_radius, rms_mix_rate, resample_sr, protect: float = 0.33, f0_file: str = None
    ) -> Tuple[int, np.ndarray]:
        """
            # https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118  # noqa
        :param f0_up_key:  变调(整数, 半音数量, 升八度12降八度-12)
        :param input_audio:
        :param f0_file:  F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调
        :param protect: 保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果
        :param model_index:
        :param f0_method:
        :param index_rate: 检索特征占比
        :param filter_radius: >=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音
        :param rms_mix_rate: 输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络
        :param resample_sr: 后处理重采样至最终采样率,0为不进行重采样
        :return:
        """
        if input_audio is None:
            raise RuntimeError("Please provide input audio.")

        if model_index is None:
            raise RuntimeError("Please select a model.")

        model = self._loaded_models[model_index]

        # Reference: so-vits
        (audio_samp, audio_npy) = input_audio

        # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
        # Can be change well, we will see
        if (audio_npy.shape[0] / audio_samp) > 600 and self.in_hf_space:
            raise RuntimeError("Input audio is longer than 600 secs.")

        # Bloody hell: https://stackoverflow.com/questions/26921836/
        if audio_npy.dtype != np.float32:  # :thonk:
            audio_npy = (
                    audio_npy / np.iinfo(audio_npy.dtype).max
            ).astype(np.float32)

        if len(audio_npy.shape) > 1:
            audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))

        if audio_samp != 16000:
            audio_npy = librosa.resample(
                audio_npy,
                orig_sr=audio_samp,
                target_sr=16000
            )

        f0_up_key = int(f0_up_key)
        times = [0, 0, 0]

        checksum = hashlib.sha512()
        checksum.update(audio_npy.tobytes())
        feat_file_index = ''
        if (
                model['metadata']['feat_index'] != ""
                # and file_big_npy != ""
                # and os.path.exists(file_big_npy) == True
                and os.path.exists(model['metadata']['feat_index']) == True
                and index_rate != 0
        ):
            feat_file_index = model['metadata']['feat_index']

        output_audio = model['vc'].pipeline(
            self.hubert_model,
            model['net_g'],
            model['metadata'].get('speaker_id', 0),
            audio_npy,
            checksum.hexdigest(),
            times,
            f0_up_key,
            f0_method,
            feat_file_index,
            index_rate,
            model['if_f0'],
            filter_radius,
            model['target_sr'],
            resample_sr,
            rms_mix_rate,
            'v2',
            protect,
            f0_file=f0_file
        )

        out_sr = (
            resample_sr if 16000 <= resample_sr != model['target_sr']
            else model['target_sr']
        )

        logger.info(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
        return out_sr, output_audio