import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline class Whisper: """Whisper - audio transcriber class""" device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 def __init__(self, model_id: str = "openai/whisper-base") -> None: self.model_id = model_id self.model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=self.torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, ) self.model.to(self.device) self.processor = AutoProcessor.from_pretrained(model_id) @property def model_name(self): """ Getter method for retrieving the model name. """ return self.model_id def save(self, save_dir: str): """ Saves the model and processor to the specified directory. Args: save_dir (str): The directory where the model and processor will be saved. """ self.model.save_pretrained(f"{save_dir}/model") self.processor.save_pretrained(f"{save_dir}/processor") def load(self, load_dir: str): """ Load the model and processor from the specified directory. Args: load_dir (str): The directory from which to load the model and processor. """ self.model = AutoModelForSpeechSeq2Seq.from_pretrained(f"{load_dir}/model") self.processor = AutoProcessor.from_pretrained(f"{load_dir}/processor") self.model.to(self.device) def pipeline(self): pipe = pipeline( "automatic-speech-recognition", model=self.model, tokenizer=self.processor.tokenizer, feature_extractor=self.processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, return_timestamps=True, torch_dtype=self.torch_dtype, device=self.device, ) return pipe def transcribe_audio(file): whisper = Whisper() pipe = whisper.pipeline() result = pipe(file) return result