File size: 7,873 Bytes
2a9e003
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import numpy as np
import torch
import fcbh.utils
from enum import Enum

def resize_mask(mask, shape):
    return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1)

class PorterDuffMode(Enum):
    ADD = 0
    CLEAR = 1
    DARKEN = 2
    DST = 3
    DST_ATOP = 4
    DST_IN = 5
    DST_OUT = 6
    DST_OVER = 7
    LIGHTEN = 8
    MULTIPLY = 9
    OVERLAY = 10
    SCREEN = 11
    SRC = 12
    SRC_ATOP = 13
    SRC_IN = 14
    SRC_OUT = 15
    SRC_OVER = 16
    XOR = 17


def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode):
    if mode == PorterDuffMode.ADD:
        out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1)
        out_image = torch.clamp(src_image + dst_image, 0, 1)
    elif mode == PorterDuffMode.CLEAR:
        out_alpha = torch.zeros_like(dst_alpha)
        out_image = torch.zeros_like(dst_image)
    elif mode == PorterDuffMode.DARKEN:
        out_alpha = src_alpha + dst_alpha  - src_alpha * dst_alpha
        out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image)
    elif mode == PorterDuffMode.DST:
        out_alpha = dst_alpha
        out_image = dst_image
    elif mode == PorterDuffMode.DST_ATOP:
        out_alpha = src_alpha
        out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image
    elif mode == PorterDuffMode.DST_IN:
        out_alpha = src_alpha * dst_alpha
        out_image = dst_image * src_alpha
    elif mode == PorterDuffMode.DST_OUT:
        out_alpha = (1 - src_alpha) * dst_alpha
        out_image = (1 - src_alpha) * dst_image
    elif mode == PorterDuffMode.DST_OVER:
        out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha
        out_image = dst_image + (1 - dst_alpha) * src_image
    elif mode == PorterDuffMode.LIGHTEN:
        out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
        out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image)
    elif mode == PorterDuffMode.MULTIPLY:
        out_alpha = src_alpha * dst_alpha
        out_image = src_image * dst_image
    elif mode == PorterDuffMode.OVERLAY:
        out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
        out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image,
            src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image))
    elif mode == PorterDuffMode.SCREEN:
        out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha
        out_image = src_image + dst_image - src_image * dst_image
    elif mode == PorterDuffMode.SRC:
        out_alpha = src_alpha
        out_image = src_image
    elif mode == PorterDuffMode.SRC_ATOP:
        out_alpha = dst_alpha
        out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image
    elif mode == PorterDuffMode.SRC_IN:
        out_alpha = src_alpha * dst_alpha
        out_image = src_image * dst_alpha
    elif mode == PorterDuffMode.SRC_OUT:
        out_alpha = (1 - dst_alpha) * src_alpha
        out_image = (1 - dst_alpha) * src_image
    elif mode == PorterDuffMode.SRC_OVER:
        out_alpha = src_alpha + (1 - src_alpha) * dst_alpha
        out_image = src_image + (1 - src_alpha) * dst_image
    elif mode == PorterDuffMode.XOR:
        out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha
        out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image
    else:
        out_alpha = None
        out_image = None
    return out_image, out_alpha


class PorterDuffImageComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "source": ("IMAGE",),
                "source_alpha": ("MASK",),
                "destination": ("IMAGE",),
                "destination_alpha": ("MASK",),
                "mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}),
            },
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "composite"
    CATEGORY = "mask/compositing"

    def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode):
        batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha))
        out_images = []
        out_alphas = []

        for i in range(batch_size):
            src_image = source[i]
            dst_image = destination[i]

            assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels

            src_alpha = source_alpha[i].unsqueeze(2)
            dst_alpha = destination_alpha[i].unsqueeze(2)

            if dst_alpha.shape[:2] != dst_image.shape[:2]:
                upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2)
                upscale_output = fcbh.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
                dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)
            if src_image.shape != dst_image.shape:
                upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2)
                upscale_output = fcbh.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center')
                src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0)
            if src_alpha.shape != dst_alpha.shape:
                upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2)
                upscale_output = fcbh.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center')
                src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0)

            out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode])

            out_images.append(out_image)
            out_alphas.append(out_alpha.squeeze(2))

        result = (torch.stack(out_images), torch.stack(out_alphas))
        return result


class SplitImageWithAlpha:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                }
        }

    CATEGORY = "mask/compositing"
    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "split_image_with_alpha"

    def split_image_with_alpha(self, image: torch.Tensor):
        out_images = [i[:,:,:3] for i in image]
        out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image]
        result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas))
        return result


class JoinImageWithAlpha:
    @classmethod
    def INPUT_TYPES(s):
        return {
                "required": {
                    "image": ("IMAGE",),
                    "alpha": ("MASK",),
                }
        }

    CATEGORY = "mask/compositing"
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "join_image_with_alpha"

    def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor):
        batch_size = min(len(image), len(alpha))
        out_images = []

        alpha = 1.0 - resize_mask(alpha, image.shape[1:])
        for i in range(batch_size):
           out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2))

        result = (torch.stack(out_images),)
        return result


NODE_CLASS_MAPPINGS = {
    "PorterDuffImageComposite": PorterDuffImageComposite,
    "SplitImageWithAlpha": SplitImageWithAlpha,
    "JoinImageWithAlpha": JoinImageWithAlpha,
}


NODE_DISPLAY_NAME_MAPPINGS = {
    "PorterDuffImageComposite": "Porter-Duff Image Composite",
    "SplitImageWithAlpha": "Split Image with Alpha",
    "JoinImageWithAlpha": "Join Image with Alpha",
}