|
import torch |
|
from fcbh.ldm.modules.diffusionmodules.openaimodel import UNetModel |
|
from fcbh.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation |
|
from fcbh.ldm.modules.diffusionmodules.openaimodel import Timestep |
|
import fcbh.model_management |
|
import fcbh.conds |
|
from enum import Enum |
|
from . import utils |
|
|
|
class ModelType(Enum): |
|
EPS = 1 |
|
V_PREDICTION = 2 |
|
|
|
|
|
from fcbh.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete |
|
|
|
def model_sampling(model_config, model_type): |
|
if model_type == ModelType.EPS: |
|
c = EPS |
|
elif model_type == ModelType.V_PREDICTION: |
|
c = V_PREDICTION |
|
|
|
s = ModelSamplingDiscrete |
|
|
|
class ModelSampling(s, c): |
|
pass |
|
|
|
return ModelSampling(model_config) |
|
|
|
|
|
class BaseModel(torch.nn.Module): |
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None): |
|
super().__init__() |
|
|
|
unet_config = model_config.unet_config |
|
self.latent_format = model_config.latent_format |
|
self.model_config = model_config |
|
|
|
if not unet_config.get("disable_unet_model_creation", False): |
|
self.diffusion_model = UNetModel(**unet_config, device=device) |
|
self.model_type = model_type |
|
self.model_sampling = model_sampling(model_config, model_type) |
|
|
|
self.adm_channels = unet_config.get("adm_in_channels", None) |
|
if self.adm_channels is None: |
|
self.adm_channels = 0 |
|
self.inpaint_model = False |
|
print("model_type", model_type.name) |
|
print("adm", self.adm_channels) |
|
|
|
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): |
|
sigma = t |
|
xc = self.model_sampling.calculate_input(sigma, x) |
|
if c_concat is not None: |
|
xc = torch.cat([xc] + [c_concat], dim=1) |
|
|
|
context = c_crossattn |
|
dtype = self.get_dtype() |
|
xc = xc.to(dtype) |
|
t = self.model_sampling.timestep(t).float() |
|
context = context.to(dtype) |
|
extra_conds = {} |
|
for o in kwargs: |
|
extra = kwargs[o] |
|
if hasattr(extra, "to"): |
|
extra = extra.to(dtype) |
|
extra_conds[o] = extra |
|
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() |
|
return self.model_sampling.calculate_denoised(sigma, model_output, x) |
|
|
|
def get_dtype(self): |
|
return self.diffusion_model.dtype |
|
|
|
def is_adm(self): |
|
return self.adm_channels > 0 |
|
|
|
def encode_adm(self, **kwargs): |
|
return None |
|
|
|
def extra_conds(self, **kwargs): |
|
out = {} |
|
if self.inpaint_model: |
|
concat_keys = ("mask", "masked_image") |
|
cond_concat = [] |
|
denoise_mask = kwargs.get("denoise_mask", None) |
|
latent_image = kwargs.get("latent_image", None) |
|
noise = kwargs.get("noise", None) |
|
device = kwargs["device"] |
|
|
|
def blank_inpaint_image_like(latent_image): |
|
blank_image = torch.ones_like(latent_image) |
|
|
|
blank_image[:,0] *= 0.8223 |
|
blank_image[:,1] *= -0.6876 |
|
blank_image[:,2] *= 0.6364 |
|
blank_image[:,3] *= 0.1380 |
|
return blank_image |
|
|
|
for ck in concat_keys: |
|
if denoise_mask is not None: |
|
if ck == "mask": |
|
cond_concat.append(denoise_mask[:,:1].to(device)) |
|
elif ck == "masked_image": |
|
cond_concat.append(latent_image.to(device)) |
|
else: |
|
if ck == "mask": |
|
cond_concat.append(torch.ones_like(noise)[:,:1]) |
|
elif ck == "masked_image": |
|
cond_concat.append(blank_inpaint_image_like(noise)) |
|
data = torch.cat(cond_concat, dim=1) |
|
out['c_concat'] = fcbh.conds.CONDNoiseShape(data) |
|
adm = self.encode_adm(**kwargs) |
|
if adm is not None: |
|
out['y'] = fcbh.conds.CONDRegular(adm) |
|
return out |
|
|
|
def load_model_weights(self, sd, unet_prefix=""): |
|
to_load = {} |
|
keys = list(sd.keys()) |
|
for k in keys: |
|
if k.startswith(unet_prefix): |
|
to_load[k[len(unet_prefix):]] = sd.pop(k) |
|
|
|
to_load = self.model_config.process_unet_state_dict(to_load) |
|
m, u = self.diffusion_model.load_state_dict(to_load, strict=False) |
|
if len(m) > 0: |
|
print("unet missing:", m) |
|
|
|
if len(u) > 0: |
|
print("unet unexpected:", u) |
|
del to_load |
|
return self |
|
|
|
def process_latent_in(self, latent): |
|
return self.latent_format.process_in(latent) |
|
|
|
def process_latent_out(self, latent): |
|
return self.latent_format.process_out(latent) |
|
|
|
def state_dict_for_saving(self, clip_state_dict, vae_state_dict): |
|
clip_state_dict = self.model_config.process_clip_state_dict_for_saving(clip_state_dict) |
|
unet_sd = self.diffusion_model.state_dict() |
|
unet_state_dict = {} |
|
for k in unet_sd: |
|
unet_state_dict[k] = fcbh.model_management.resolve_lowvram_weight(unet_sd[k], self.diffusion_model, k) |
|
|
|
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) |
|
vae_state_dict = self.model_config.process_vae_state_dict_for_saving(vae_state_dict) |
|
if self.get_dtype() == torch.float16: |
|
clip_state_dict = utils.convert_sd_to(clip_state_dict, torch.float16) |
|
vae_state_dict = utils.convert_sd_to(vae_state_dict, torch.float16) |
|
|
|
if self.model_type == ModelType.V_PREDICTION: |
|
unet_state_dict["v_pred"] = torch.tensor([]) |
|
|
|
return {**unet_state_dict, **vae_state_dict, **clip_state_dict} |
|
|
|
def set_inpaint(self): |
|
self.inpaint_model = True |
|
|
|
def memory_required(self, input_shape): |
|
area = input_shape[0] * input_shape[2] * input_shape[3] |
|
if fcbh.model_management.xformers_enabled() or fcbh.model_management.pytorch_attention_flash_attention(): |
|
|
|
return (area / (fcbh.model_management.dtype_size(self.get_dtype()) * 10)) * (1024 * 1024) |
|
else: |
|
|
|
return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) |
|
|
|
|
|
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0): |
|
adm_inputs = [] |
|
weights = [] |
|
noise_aug = [] |
|
for unclip_cond in unclip_conditioning: |
|
for adm_cond in unclip_cond["clip_vision_output"].image_embeds: |
|
weight = unclip_cond["strength"] |
|
noise_augment = unclip_cond["noise_augmentation"] |
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) |
|
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device)) |
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight |
|
weights.append(weight) |
|
noise_aug.append(noise_augment) |
|
adm_inputs.append(adm_out) |
|
|
|
if len(noise_aug) > 1: |
|
adm_out = torch.stack(adm_inputs).sum(0) |
|
noise_augment = noise_augment_merge |
|
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) |
|
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) |
|
adm_out = torch.cat((c_adm, noise_level_emb), 1) |
|
|
|
return adm_out |
|
|
|
class SD21UNCLIP(BaseModel): |
|
def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): |
|
super().__init__(model_config, model_type, device=device) |
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) |
|
|
|
def encode_adm(self, **kwargs): |
|
unclip_conditioning = kwargs.get("unclip_conditioning", None) |
|
device = kwargs["device"] |
|
if unclip_conditioning is None: |
|
return torch.zeros((1, self.adm_channels)) |
|
else: |
|
return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05)) |
|
|
|
def sdxl_pooled(args, noise_augmentor): |
|
if "unclip_conditioning" in args: |
|
return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor)[:,:1280] |
|
else: |
|
return args["pooled_output"] |
|
|
|
class SDXLRefiner(BaseModel): |
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None): |
|
super().__init__(model_config, model_type, device=device) |
|
self.embedder = Timestep(256) |
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) |
|
|
|
def encode_adm(self, **kwargs): |
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
crop_w = kwargs.get("crop_w", 0) |
|
crop_h = kwargs.get("crop_h", 0) |
|
|
|
if kwargs.get("prompt_type", "") == "negative": |
|
aesthetic_score = kwargs.get("aesthetic_score", 2.5) |
|
else: |
|
aesthetic_score = kwargs.get("aesthetic_score", 6) |
|
|
|
out = [] |
|
out.append(self.embedder(torch.Tensor([height]))) |
|
out.append(self.embedder(torch.Tensor([width]))) |
|
out.append(self.embedder(torch.Tensor([crop_h]))) |
|
out.append(self.embedder(torch.Tensor([crop_w]))) |
|
out.append(self.embedder(torch.Tensor([aesthetic_score]))) |
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) |
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) |
|
|
|
class SDXL(BaseModel): |
|
def __init__(self, model_config, model_type=ModelType.EPS, device=None): |
|
super().__init__(model_config, model_type, device=device) |
|
self.embedder = Timestep(256) |
|
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) |
|
|
|
def encode_adm(self, **kwargs): |
|
clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) |
|
width = kwargs.get("width", 768) |
|
height = kwargs.get("height", 768) |
|
crop_w = kwargs.get("crop_w", 0) |
|
crop_h = kwargs.get("crop_h", 0) |
|
target_width = kwargs.get("target_width", width) |
|
target_height = kwargs.get("target_height", height) |
|
|
|
out = [] |
|
out.append(self.embedder(torch.Tensor([height]))) |
|
out.append(self.embedder(torch.Tensor([width]))) |
|
out.append(self.embedder(torch.Tensor([crop_h]))) |
|
out.append(self.embedder(torch.Tensor([crop_w]))) |
|
out.append(self.embedder(torch.Tensor([target_height]))) |
|
out.append(self.embedder(torch.Tensor([target_width]))) |
|
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) |
|
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) |
|
|