|
import os |
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig, modeling_utils |
|
import fcbh.ops |
|
import torch |
|
import traceback |
|
import zipfile |
|
from . import model_management |
|
import contextlib |
|
|
|
def gen_empty_tokens(special_tokens, length): |
|
start_token = special_tokens.get("start", None) |
|
end_token = special_tokens.get("end", None) |
|
pad_token = special_tokens.get("pad") |
|
output = [] |
|
if start_token is not None: |
|
output.append(start_token) |
|
if end_token is not None: |
|
output.append(end_token) |
|
output += [pad_token] * (length - len(output)) |
|
return output |
|
|
|
class ClipTokenWeightEncoder: |
|
def encode_token_weights(self, token_weight_pairs): |
|
to_encode = list() |
|
max_token_len = 0 |
|
has_weights = False |
|
for x in token_weight_pairs: |
|
tokens = list(map(lambda a: a[0], x)) |
|
max_token_len = max(len(tokens), max_token_len) |
|
has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x)) |
|
to_encode.append(tokens) |
|
|
|
sections = len(to_encode) |
|
if has_weights or sections == 0: |
|
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len)) |
|
|
|
out, pooled = self.encode(to_encode) |
|
if pooled is not None: |
|
first_pooled = pooled[0:1].cpu() |
|
else: |
|
first_pooled = pooled |
|
|
|
output = [] |
|
for k in range(0, sections): |
|
z = out[k:k+1] |
|
if has_weights: |
|
z_empty = out[-1] |
|
for i in range(len(z)): |
|
for j in range(len(z[i])): |
|
weight = token_weight_pairs[k][j][1] |
|
if weight != 1.0: |
|
z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j] |
|
output.append(z) |
|
|
|
if (len(output) == 0): |
|
return out[-1:].cpu(), first_pooled |
|
return torch.cat(output, dim=-2).cpu(), first_pooled |
|
|
|
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder): |
|
"""Uses the CLIP transformer encoder for text (from huggingface)""" |
|
LAYERS = [ |
|
"last", |
|
"pooled", |
|
"hidden" |
|
] |
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, |
|
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None, dtype=None, |
|
special_tokens={"start": 49406, "end": 49407, "pad": 49407},layer_norm_hidden_state=True, config_class=CLIPTextConfig, |
|
model_class=CLIPTextModel, inner_name="text_model"): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
self.num_layers = 12 |
|
if textmodel_path is not None: |
|
self.transformer = model_class.from_pretrained(textmodel_path) |
|
else: |
|
if textmodel_json_config is None: |
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") |
|
config = config_class.from_json_file(textmodel_json_config) |
|
self.num_layers = config.num_hidden_layers |
|
with fcbh.ops.use_fcbh_ops(device, dtype): |
|
with modeling_utils.no_init_weights(): |
|
self.transformer = model_class(config) |
|
|
|
self.inner_name = inner_name |
|
if dtype is not None: |
|
self.transformer.to(dtype) |
|
inner_model = getattr(self.transformer, self.inner_name) |
|
if hasattr(inner_model, "embeddings"): |
|
inner_model.embeddings.to(torch.float32) |
|
else: |
|
self.transformer.set_input_embeddings(self.transformer.get_input_embeddings().to(torch.float32)) |
|
|
|
self.max_length = max_length |
|
if freeze: |
|
self.freeze() |
|
self.layer = layer |
|
self.layer_idx = None |
|
self.special_tokens = special_tokens |
|
self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1])) |
|
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055)) |
|
self.enable_attention_masks = False |
|
|
|
self.layer_norm_hidden_state = layer_norm_hidden_state |
|
if layer == "hidden": |
|
assert layer_idx is not None |
|
assert abs(layer_idx) <= self.num_layers |
|
self.clip_layer(layer_idx) |
|
self.layer_default = (self.layer, self.layer_idx) |
|
|
|
def freeze(self): |
|
self.transformer = self.transformer.eval() |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def clip_layer(self, layer_idx): |
|
if abs(layer_idx) >= self.num_layers: |
|
self.layer = "last" |
|
else: |
|
self.layer = "hidden" |
|
self.layer_idx = layer_idx |
|
|
|
def reset_clip_layer(self): |
|
self.layer = self.layer_default[0] |
|
self.layer_idx = self.layer_default[1] |
|
|
|
def set_up_textual_embeddings(self, tokens, current_embeds): |
|
out_tokens = [] |
|
next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1 |
|
embedding_weights = [] |
|
|
|
for x in tokens: |
|
tokens_temp = [] |
|
for y in x: |
|
if isinstance(y, int): |
|
if y == token_dict_size: |
|
y = -1 |
|
tokens_temp += [y] |
|
else: |
|
if y.shape[0] == current_embeds.weight.shape[1]: |
|
embedding_weights += [y] |
|
tokens_temp += [next_new_token] |
|
next_new_token += 1 |
|
else: |
|
print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1]) |
|
while len(tokens_temp) < len(x): |
|
tokens_temp += [self.special_tokens["pad"]] |
|
out_tokens += [tokens_temp] |
|
|
|
n = token_dict_size |
|
if len(embedding_weights) > 0: |
|
new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype) |
|
new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1] |
|
for x in embedding_weights: |
|
new_embedding.weight[n] = x |
|
n += 1 |
|
new_embedding.weight[n] = current_embeds.weight[-1] |
|
self.transformer.set_input_embeddings(new_embedding) |
|
|
|
processed_tokens = [] |
|
for x in out_tokens: |
|
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] |
|
|
|
return processed_tokens |
|
|
|
def forward(self, tokens): |
|
backup_embeds = self.transformer.get_input_embeddings() |
|
device = backup_embeds.weight.device |
|
tokens = self.set_up_textual_embeddings(tokens, backup_embeds) |
|
tokens = torch.LongTensor(tokens).to(device) |
|
|
|
if getattr(self.transformer, self.inner_name).final_layer_norm.weight.dtype != torch.float32: |
|
precision_scope = torch.autocast |
|
else: |
|
precision_scope = lambda a, dtype: contextlib.nullcontext(a) |
|
|
|
with precision_scope(model_management.get_autocast_device(device), dtype=torch.float32): |
|
attention_mask = None |
|
if self.enable_attention_masks: |
|
attention_mask = torch.zeros_like(tokens) |
|
max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1 |
|
for x in range(attention_mask.shape[0]): |
|
for y in range(attention_mask.shape[1]): |
|
attention_mask[x, y] = 1 |
|
if tokens[x, y] == max_token: |
|
break |
|
|
|
outputs = self.transformer(input_ids=tokens, attention_mask=attention_mask, output_hidden_states=self.layer=="hidden") |
|
self.transformer.set_input_embeddings(backup_embeds) |
|
|
|
if self.layer == "last": |
|
z = outputs.last_hidden_state |
|
elif self.layer == "pooled": |
|
z = outputs.pooler_output[:, None, :] |
|
else: |
|
z = outputs.hidden_states[self.layer_idx] |
|
if self.layer_norm_hidden_state: |
|
z = getattr(self.transformer, self.inner_name).final_layer_norm(z) |
|
|
|
if hasattr(outputs, "pooler_output"): |
|
pooled_output = outputs.pooler_output.float() |
|
else: |
|
pooled_output = None |
|
|
|
if self.text_projection is not None and pooled_output is not None: |
|
pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float() |
|
return z.float(), pooled_output |
|
|
|
def encode(self, tokens): |
|
return self(tokens) |
|
|
|
def load_sd(self, sd): |
|
if "text_projection" in sd: |
|
self.text_projection[:] = sd.pop("text_projection") |
|
if "text_projection.weight" in sd: |
|
self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1) |
|
return self.transformer.load_state_dict(sd, strict=False) |
|
|
|
def parse_parentheses(string): |
|
result = [] |
|
current_item = "" |
|
nesting_level = 0 |
|
for char in string: |
|
if char == "(": |
|
if nesting_level == 0: |
|
if current_item: |
|
result.append(current_item) |
|
current_item = "(" |
|
else: |
|
current_item = "(" |
|
else: |
|
current_item += char |
|
nesting_level += 1 |
|
elif char == ")": |
|
nesting_level -= 1 |
|
if nesting_level == 0: |
|
result.append(current_item + ")") |
|
current_item = "" |
|
else: |
|
current_item += char |
|
else: |
|
current_item += char |
|
if current_item: |
|
result.append(current_item) |
|
return result |
|
|
|
def token_weights(string, current_weight): |
|
a = parse_parentheses(string) |
|
out = [] |
|
for x in a: |
|
weight = current_weight |
|
if len(x) >= 2 and x[-1] == ')' and x[0] == '(': |
|
x = x[1:-1] |
|
xx = x.rfind(":") |
|
weight *= 1.1 |
|
if xx > 0: |
|
try: |
|
weight = float(x[xx+1:]) |
|
x = x[:xx] |
|
except: |
|
pass |
|
out += token_weights(x, weight) |
|
else: |
|
out += [(x, current_weight)] |
|
return out |
|
|
|
def escape_important(text): |
|
text = text.replace("\\)", "\0\1") |
|
text = text.replace("\\(", "\0\2") |
|
return text |
|
|
|
def unescape_important(text): |
|
text = text.replace("\0\1", ")") |
|
text = text.replace("\0\2", "(") |
|
return text |
|
|
|
def safe_load_embed_zip(embed_path): |
|
with zipfile.ZipFile(embed_path) as myzip: |
|
names = list(filter(lambda a: "data/" in a, myzip.namelist())) |
|
names.reverse() |
|
for n in names: |
|
with myzip.open(n) as myfile: |
|
data = myfile.read() |
|
number = len(data) // 4 |
|
length_embed = 1024 |
|
if number < 768: |
|
continue |
|
if number % 768 == 0: |
|
length_embed = 768 |
|
num_embeds = number // length_embed |
|
embed = torch.frombuffer(data, dtype=torch.float) |
|
out = embed.reshape((num_embeds, length_embed)).clone() |
|
del embed |
|
return out |
|
|
|
def expand_directory_list(directories): |
|
dirs = set() |
|
for x in directories: |
|
dirs.add(x) |
|
for root, subdir, file in os.walk(x, followlinks=True): |
|
dirs.add(root) |
|
return list(dirs) |
|
|
|
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None): |
|
if isinstance(embedding_directory, str): |
|
embedding_directory = [embedding_directory] |
|
|
|
embedding_directory = expand_directory_list(embedding_directory) |
|
|
|
valid_file = None |
|
for embed_dir in embedding_directory: |
|
embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name)) |
|
embed_dir = os.path.abspath(embed_dir) |
|
try: |
|
if os.path.commonpath((embed_dir, embed_path)) != embed_dir: |
|
continue |
|
except: |
|
continue |
|
if not os.path.isfile(embed_path): |
|
extensions = ['.safetensors', '.pt', '.bin'] |
|
for x in extensions: |
|
t = embed_path + x |
|
if os.path.isfile(t): |
|
valid_file = t |
|
break |
|
else: |
|
valid_file = embed_path |
|
if valid_file is not None: |
|
break |
|
|
|
if valid_file is None: |
|
return None |
|
|
|
embed_path = valid_file |
|
|
|
embed_out = None |
|
|
|
try: |
|
if embed_path.lower().endswith(".safetensors"): |
|
import safetensors.torch |
|
embed = safetensors.torch.load_file(embed_path, device="cpu") |
|
else: |
|
if 'weights_only' in torch.load.__code__.co_varnames: |
|
try: |
|
embed = torch.load(embed_path, weights_only=True, map_location="cpu") |
|
except: |
|
embed_out = safe_load_embed_zip(embed_path) |
|
else: |
|
embed = torch.load(embed_path, map_location="cpu") |
|
except Exception as e: |
|
print(traceback.format_exc()) |
|
print() |
|
print("error loading embedding, skipping loading:", embedding_name) |
|
return None |
|
|
|
if embed_out is None: |
|
if 'string_to_param' in embed: |
|
values = embed['string_to_param'].values() |
|
embed_out = next(iter(values)) |
|
elif isinstance(embed, list): |
|
out_list = [] |
|
for x in range(len(embed)): |
|
for k in embed[x]: |
|
t = embed[x][k] |
|
if t.shape[-1] != embedding_size: |
|
continue |
|
out_list.append(t.reshape(-1, t.shape[-1])) |
|
embed_out = torch.cat(out_list, dim=0) |
|
elif embed_key is not None and embed_key in embed: |
|
embed_out = embed[embed_key] |
|
else: |
|
values = embed.values() |
|
embed_out = next(iter(values)) |
|
return embed_out |
|
|
|
class SDTokenizer: |
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True): |
|
if tokenizer_path is None: |
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") |
|
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path) |
|
self.max_length = max_length |
|
|
|
empty = self.tokenizer('')["input_ids"] |
|
if has_start_token: |
|
self.tokens_start = 1 |
|
self.start_token = empty[0] |
|
self.end_token = empty[1] |
|
else: |
|
self.tokens_start = 0 |
|
self.start_token = None |
|
self.end_token = empty[0] |
|
self.pad_with_end = pad_with_end |
|
self.pad_to_max_length = pad_to_max_length |
|
|
|
vocab = self.tokenizer.get_vocab() |
|
self.inv_vocab = {v: k for k, v in vocab.items()} |
|
self.embedding_directory = embedding_directory |
|
self.max_word_length = 8 |
|
self.embedding_identifier = "embedding:" |
|
self.embedding_size = embedding_size |
|
self.embedding_key = embedding_key |
|
|
|
def _try_get_embedding(self, embedding_name:str): |
|
''' |
|
Takes a potential embedding name and tries to retrieve it. |
|
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None. |
|
''' |
|
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key) |
|
if embed is None: |
|
stripped = embedding_name.strip(',') |
|
if len(stripped) < len(embedding_name): |
|
embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key) |
|
return (embed, embedding_name[len(stripped):]) |
|
return (embed, "") |
|
|
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False): |
|
''' |
|
Takes a prompt and converts it to a list of (token, weight, word id) elements. |
|
Tokens can both be integer tokens and pre computed CLIP tensors. |
|
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens. |
|
Returned list has the dimensions NxM where M is the input size of CLIP |
|
''' |
|
if self.pad_with_end: |
|
pad_token = self.end_token |
|
else: |
|
pad_token = 0 |
|
|
|
text = escape_important(text) |
|
parsed_weights = token_weights(text, 1.0) |
|
|
|
|
|
tokens = [] |
|
for weighted_segment, weight in parsed_weights: |
|
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ') |
|
to_tokenize = [x for x in to_tokenize if x != ""] |
|
for word in to_tokenize: |
|
|
|
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None: |
|
embedding_name = word[len(self.embedding_identifier):].strip('\n') |
|
embed, leftover = self._try_get_embedding(embedding_name) |
|
if embed is None: |
|
print(f"warning, embedding:{embedding_name} does not exist, ignoring") |
|
else: |
|
if len(embed.shape) == 1: |
|
tokens.append([(embed, weight)]) |
|
else: |
|
tokens.append([(embed[x], weight) for x in range(embed.shape[0])]) |
|
|
|
if leftover != "": |
|
word = leftover |
|
else: |
|
continue |
|
|
|
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]]) |
|
|
|
|
|
batched_tokens = [] |
|
batch = [] |
|
if self.start_token is not None: |
|
batch.append((self.start_token, 1.0, 0)) |
|
batched_tokens.append(batch) |
|
for i, t_group in enumerate(tokens): |
|
|
|
is_large = len(t_group) >= self.max_word_length |
|
|
|
while len(t_group) > 0: |
|
if len(t_group) + len(batch) > self.max_length - 1: |
|
remaining_length = self.max_length - len(batch) - 1 |
|
|
|
if is_large: |
|
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]]) |
|
batch.append((self.end_token, 1.0, 0)) |
|
t_group = t_group[remaining_length:] |
|
|
|
else: |
|
batch.append((self.end_token, 1.0, 0)) |
|
if self.pad_to_max_length: |
|
batch.extend([(pad_token, 1.0, 0)] * (remaining_length)) |
|
|
|
batch = [] |
|
if self.start_token is not None: |
|
batch.append((self.start_token, 1.0, 0)) |
|
batched_tokens.append(batch) |
|
else: |
|
batch.extend([(t,w,i+1) for t,w in t_group]) |
|
t_group = [] |
|
|
|
|
|
batch.append((self.end_token, 1.0, 0)) |
|
if self.pad_to_max_length: |
|
batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch))) |
|
|
|
if not return_word_ids: |
|
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens] |
|
|
|
return batched_tokens |
|
|
|
|
|
def untokenize(self, token_weight_pair): |
|
return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair)) |
|
|
|
|
|
class SD1Tokenizer: |
|
def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer): |
|
self.clip_name = clip_name |
|
self.clip = "clip_{}".format(self.clip_name) |
|
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory)) |
|
|
|
def tokenize_with_weights(self, text:str, return_word_ids=False): |
|
out = {} |
|
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids) |
|
return out |
|
|
|
def untokenize(self, token_weight_pair): |
|
return getattr(self, self.clip).untokenize(token_weight_pair) |
|
|
|
|
|
class SD1ClipModel(torch.nn.Module): |
|
def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs): |
|
super().__init__() |
|
self.clip_name = clip_name |
|
self.clip = "clip_{}".format(self.clip_name) |
|
setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs)) |
|
|
|
def clip_layer(self, layer_idx): |
|
getattr(self, self.clip).clip_layer(layer_idx) |
|
|
|
def reset_clip_layer(self): |
|
getattr(self, self.clip).reset_clip_layer() |
|
|
|
def encode_token_weights(self, token_weight_pairs): |
|
token_weight_pairs = token_weight_pairs[self.clip_name] |
|
out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs) |
|
return out, pooled |
|
|
|
def load_sd(self, sd): |
|
return getattr(self, self.clip).load_sd(sd) |
|
|