from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, modeling_utils from .utils import load_torch_file, transformers_convert, common_upscale import os import torch import contextlib import fcbh.ops import fcbh.model_patcher import fcbh.model_management import fcbh.utils def clip_preprocess(image, size=224): mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype) std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype) scale = (size / min(image.shape[1], image.shape[2])) image = torch.nn.functional.interpolate(image.movedim(-1, 1), size=(round(scale * image.shape[1]), round(scale * image.shape[2])), mode="bicubic", antialias=True) h = (image.shape[2] - size)//2 w = (image.shape[3] - size)//2 image = image[:,:,h:h+size,w:w+size] image = torch.clip((255. * image), 0, 255).round() / 255.0 return (image - mean.view([3,1,1])) / std.view([3,1,1]) class ClipVisionModel(): def __init__(self, json_config): config = CLIPVisionConfig.from_json_file(json_config) self.load_device = fcbh.model_management.text_encoder_device() offload_device = fcbh.model_management.text_encoder_offload_device() self.dtype = torch.float32 if fcbh.model_management.should_use_fp16(self.load_device, prioritize_performance=False): self.dtype = torch.float16 with fcbh.ops.use_fcbh_ops(offload_device, self.dtype): with modeling_utils.no_init_weights(): self.model = CLIPVisionModelWithProjection(config) self.model.to(self.dtype) self.patcher = fcbh.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device) def load_sd(self, sd): return self.model.load_state_dict(sd, strict=False) def encode_image(self, image): fcbh.model_management.load_model_gpu(self.patcher) pixel_values = clip_preprocess(image.to(self.load_device)) if self.dtype != torch.float32: precision_scope = torch.autocast else: precision_scope = lambda a, b: contextlib.nullcontext(a) with precision_scope(fcbh.model_management.get_autocast_device(self.load_device), torch.float32): outputs = self.model(pixel_values=pixel_values, output_hidden_states=True) for k in outputs: t = outputs[k] if t is not None: if k == 'hidden_states': outputs["penultimate_hidden_states"] = t[-2].cpu() outputs["hidden_states"] = None else: outputs[k] = t.cpu() return outputs def convert_to_transformers(sd, prefix): sd_k = sd.keys() if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: keys_to_replace = { "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", } for x in keys_to_replace: if x in sd_k: sd[keys_to_replace[x]] = sd.pop(x) if "{}proj".format(prefix) in sd_k: sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) sd = transformers_convert(sd, prefix, "vision_model.", 48) return sd def load_clipvision_from_sd(sd, prefix="", convert_keys=False): if convert_keys: sd = convert_to_transformers(sd, prefix) if "vision_model.encoder.layers.47.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json") elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") else: return None clip = ClipVisionModel(json_config) m, u = clip.load_sd(sd) if len(m) > 0: print("extra keys clip vision:", m) u = set(u) keys = list(sd.keys()) for k in keys: if k not in u: t = sd.pop(k) del t return clip def load(ckpt_path): sd = load_torch_file(ckpt_path) if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd: return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True) else: return load_clipvision_from_sd(sd)