File size: 27,361 Bytes
d209127 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import streamlit as st
import tifffile
import pydicom
from scipy.ndimage import zoom
import torch
from core.models.dani_model import dani_model
import numpy as np
from PIL import Image
import base64
import time
# Funzione per convertire un'immagine in base64
def image_to_base64(image_path):
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode()
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
/* Apply the font to everything */
html, body, [class*="st"] {
font-family: 'Roboto', sans-serif;
}
</style>
""", unsafe_allow_html=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Dati di esempio predefiniti
esempi = {
"Frontal β Lateral": {'Frontal': 'FtoL.png', 'Lateral': 'LfromF.png'},
"Frontal β Report": {'Frontal': '31d9847f-987fcf63-704f7496-d2b21eb8-63cd973e.tiff', 'Report': 'Small bilateral pleural effusions, left greater than right.'},
"Frontal β Lateral + Report": {'Frontal': '81bca127-0c416084-67f8033c-ecb26476-6d1ecf60.tiff', 'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'No acute intrathoracic process. Heart Size is normal. Lungs are clear. No pneumothorax'},
"Lateral β Frontal": {'Lateral': 'LtoF.png', 'Frontal': 'FfromL.png'},
"Lateral β Report": {'Lateral': 'd52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Report': 'no acute cardiopulmonary process. if concern for injury persists, a dedicated rib series with markers would be necessary to ensure no rib fractures.'},
"Lateral β Frontal + Report": {'Lateral': 'reald52a0c5c-bb7104b0-b1d821a5-959984c3-33c04ccb.tiff', 'Frontal': 'ab37274f-b4c1fc04-e2ff24b4-4a130ba3-cd167968.tiff', 'Report': 'No acute intrathoracic process. If there is strong concern for rib fracture, a dedicated rib series may be performed.'},
"Report β Frontal": {'Report': 'Left lung opacification which may reflect pneumonia superimposed on metastatic disease.', 'Frontal': '02aa804e-bde0afdd-112c0b34-7bc16630-4e384014.tiff'},
"Report β Lateral": {'Report': 'Bilateral pleural effusions, cardiomegaly and mild edema suggest fluid overload.', 'Lateral': '489faba7-a9dc5f1d-fd7241d6-9638d855-eaa952b1.tiff'},
"Report β Frontal + Lateral": {'Report': 'No acute intrathoracic process. The lungs are clean and heart is normal size.', 'Frontal': 'f27ba7cd-44486c2e-29f3e890-f2b9f94e-84110448.tiff', 'Lateral': 'b20c9570-de77944a-b8604ba0-73305a7b-d608a72b.tiff'},
"Frontal + Lateral β Report": {'Frontal': '95856dd1-5878b5b1-9c104817-760c0122-6187946f.tiff', 'Lateral': '3723d912-71940d69-4fef2dd2-27af5a7b-127ba20c.tiff', 'Report': 'Opacities in the right upper or middle lobe, maybe early pneumonia.'},
"Frontal + Report β Lateral": {'Frontal': 'e7f21453-7956d79a-44e44614-fae8ff16-d174d1a0.tiff', 'Report': 'No focal consolidation.', 'Lateral': '8037e6b9-06367464-a4ccd63a-5c5c5a81-ce3e7ffc.tiff'},
"Lateral + Report β Frontal": {'Lateral': '02c66644-b1883a91-54aed0e7-62d25460-398f9865.tiff', 'Report': 'No evidence of acute cardiopulmonary process.', 'Frontal': 'b1f169f1-12177dd5-2fa1c4b1-7b816311-85d769e9.tiff'}
}
# CSS per personalizzare il tema
st.markdown("""
<style>
/* Sfondo scuro */
body {
background-color: #121212;
color: white;
}
/* Personalizzazione del titolo */
.title {
font-size: 35px !important;
font-weight: bold;
color: #f63366;
}
/* Personalizzazione dei sottotitoli e testi principali */
.stText, .stButton, .stMarkdown {
font-size: 18px !important;
}
</style>
""", unsafe_allow_html=True)
# Sostituisci questo con il link dell'immagine online
logo_1_path = "./DEMO/Loghi/Logo_UCBM.png" # Sostituisci con il percorso del primo logo
logo_2_path = "./DEMO/Loghi/Logo UmU.png" # Sostituisci con il percorso del secondo logo
logo_3_path = "./DEMO/Loghi/Logo COSBI.png" # Sostituisci con il percorso del terzo logo
logo_4_path = "./DEMO/Loghi/logo trasparent.png" # Sostituisci con il percorso del quarto logo
# Converti le immagini in base64
logo_1_base64 = image_to_base64(logo_1_path)
logo_2_base64 = image_to_base64(logo_2_path)
logo_3_base64 = image_to_base64(logo_3_path)
logo_4_base64 = image_to_base64(logo_4_path)
# CSS per posizionare i loghi in basso a destra e renderli piccoli
st.markdown(f"""
<style>
.footer {{
position: fixed;
bottom: 20px;
right: 20px;
z-index: 100;
display: flex;
gap: 10px; /* Spazio tra i loghi */
}}
.footer img {{
height: 60px; /* Altezza dei loghi */
width: auto; /* Mantiene il rapporto di aspetto originale */
}}
</style>
<div class="footer">
<img src="data:image/png;base64,{logo_1_base64}" alt="Logo 1">
<img src="data:image/png;base64,{logo_2_base64}" alt="Logo 2">
<img src="data:image/png;base64,{logo_3_base64}" alt="Logo 3">
<img src="data:image/png;base64,{logo_4_base64}" alt="Logo 4">
</div>
""", unsafe_allow_html=True)
# Inizializzazione dello stato della sessione
if 'step' not in st.session_state:
st.session_state['step'] = 1
if 'selected_option' not in st.session_state:
st.session_state['selected_option'] = None
if 'frontal_file' not in st.session_state:
st.session_state['frontal_file'] = None
if 'lateral_file' not in st.session_state:
st.session_state['lateral_file'] = None
if 'report' not in st.session_state:
st.session_state['report'] = ""
if 'inputs' not in st.session_state:
st.session_state['inputs'] = None
if 'outputs' not in st.session_state:
st.session_state['outputs'] = None
if 'frontal' not in st.session_state:
st.session_state['frontal'] = None
if 'lateral' not in st.session_state:
st.session_state['lateral'] = None
if 'report' not in st.session_state:
st.session_state['report'] = ""
if 'generate' not in st.session_state:
st.session_state['generate'] = False
# Inizializza inference_tester solo una volta
if 'inference_tester' not in st.session_state:
model_load_paths = ['CoDi_encoders.pth', 'CoDi_text_diffuser.pth', 'CoDi_video_diffuser_8frames.pth']
st.session_state['inference_tester'] = dani_model(model='thesis_model',
data_dir='/mimer/NOBACKUP/groups/snic2022-5-277/dmolino/checkpoints/',
pth=model_load_paths, load_weights=False)
inference_tester = st.session_state['inference_tester']
# Caricamento dei pesi Clip, Optimus, Frontal, Lateral e Text una sola volta
if 'weights_loaded' not in st.session_state:
st.session_state['weights_loaded'] = True # Indica che i pesi sono stati caricati
# Usa inference_tester dalla sessione
inference_tester = st.session_state['inference_tester']
st.markdown('<h1 style="text-align: center" class="title">MedCoDi-M</h1>', unsafe_allow_html=True)
if st.session_state['step'] == 1:
# Breve descrizione del lavoro
st.markdown("""
<div style='text-align: justify; font-size: 18px; line-height: 1.6;'>
This work introduces MedCoDi-M, a novel multi-prompt foundation model for multi-modal medical data generation.
In this demo, you will be able to perform various generation tasks including frontal and lateral chest X-rays and clinical report generation.
MedCoDi-M enables flexible, any-to-any generation across different medical data modalities, utilizing contrastive learning and a modular approach for enhanced performance.
</div>
""", unsafe_allow_html=True)
# lasciamo un po' di spazio
st.markdown('<br>', unsafe_allow_html=True)
# Immagine con didascalia migliorata e con dimensione della caption aumentata
image_path = "./DEMO/Loghi/model_final.png" # Sostituisci con il percorso della tua immagine
st.image(image_path, caption='', use_container_width=True)
# Caption con dimensione del testo migliorata
st.markdown("""
<div style='text-align: center; font-size: 16px; font-style: italic; margin-top: 10px;'>
Framework of MedCoDi-M: This demo allows you to generate frontal and lateral chest X-rays, as well as medical reports, through the MedCoDi-M model.
</div>
""", unsafe_allow_html=True)
# lasciamo un po' di spazio
st.markdown('<br>', unsafe_allow_html=True)
# Bottone con testo "Try it out"
if st.button("Try it out!"):
st.session_state['step'] = 2
st.rerun()
# Fase 1: Selezione dell'opzione
if st.session_state['step'] == 2:
# Opzioni disponibili
options = [
"Frontal β Lateral", "Frontal β Report", "Frontal β Lateral + Report",
"Lateral β Frontal", "Lateral β Report", "Lateral β Frontal + Report",
"Report β Frontal", "Report β Lateral", "Report β Frontal + Lateral",
"Frontal + Lateral β Report", "Frontal + Report β Lateral", "Lateral + Report β Frontal"
]
# Messaggio di selezione con dimensione aumentata
st.markdown(
"<h4 style='text-align: justify'><strong>Select the type of generation you want to perform:</strong></h4>",
unsafe_allow_html=True)
# Aumentare la dimensione di "Please select an option:"
st.markdown(
"<h4 style='text-align: justify'><strong>Please select an option:</strong></h4>",
unsafe_allow_html=True)
# Reset esplicito del valore di `selectbox` in caso di reset
st.session_state['selected_option'] = st.selectbox(
"", options, key='selectbox_option', index=0) # Rimuoviamo il testo dal selectbox
st.markdown('<br>', unsafe_allow_html=True)
# Creiamo colonne per i pulsanti
col1, col2, col3 = st.columns(3)
# Pulsante per provare un esempio
with col1:
if st.button("Inference"):
st.session_state['step'] = 3 # Passa al passo 3
st.rerun()
# Pulsante per provare un esempio
with col2:
if st.button("Try an example"):
st.session_state['step'] = 5 # Passa al passo 5
st.rerun()
# Pulsante per tornare all'inizio
with col3:
if st.button("Return to the beginning"):
# Ripristina lo stato della sessione
st.session_state['step'] = 1
st.session_state['selected_option'] = None
st.session_state['selected_option2'] = None
st.session_state['frontal_file'] = None
st.session_state['lateral_file'] = None
st.session_state['report'] = ""
st.rerun()
# Fase 2: Caricamento file
if st.session_state['step'] == 3:
st.markdown(
f"<h4 style='text-align: justify'><strong>You selected: {st.session_state['selected_option']}. Now, please upload the required files below:</strong></h4>",
unsafe_allow_html=True)
# Carica l'immagine frontale
if "Frontal" in st.session_state['selected_option'].split(" β")[0]:
st.markdown("<h5 style='font-size: 18px;'>Load the Frontal X-ray in DICOM format</h5>", unsafe_allow_html=True)
st.session_state['frontal_file'] = st.file_uploader("", type=["dcm"])
# Carica l'immagine laterale
if "Lateral" in st.session_state['selected_option'].split(" β")[0]:
st.markdown("<h5 style='font-size: 18px;'>Load the Lateral X-ray in DICOM format</h5>", unsafe_allow_html=True)
st.session_state['lateral_file'] = st.file_uploader("", type=["dcm"])
# Inserisci il report clinico
if "Report" in st.session_state['selected_option'].split(" β")[0]:
st.markdown("<h5 style='font-size: 18px;'>Type the clinical report</h5>", unsafe_allow_html=True)
st.session_state['report'] = st.text_area("", value=st.session_state['report'])
# lasciamo un po' di spazio
st.markdown('<br>', unsafe_allow_html=True)
# Creare colonne per allineare i pulsanti in orizzontale
col1, col2 = st.columns(2)
with col1:
if st.button("Start Generation"):
frontal = None
lateral = None
report = None
# Dato che questo step Γ¨ velocissimo, prima di procedere mettiamo una finta barra di caricamento di 3 secondi
with st.spinner("Preprocessing the data..."):
time.sleep(3)
# Controllo che i file necessari siano stati caricati
if "Frontal" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['frontal_file']:
st.error("Load the Frontal image.")
elif "Lateral" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['lateral_file']:
st.error("Load the Lateral image.")
elif "Report" in st.session_state['selected_option'].split(" β")[0] and not st.session_state['report']:
st.error("Type the clinical report.")
else:
st.write(f"Execution of: {st.session_state['selected_option']}")
# Carica l'immagine e avvia l'inferenza
if st.session_state['frontal_file']:
dicom = pydicom.dcmread(st.session_state['frontal_file'])
image = dicom.pixel_array
if dicom.PhotometricInterpretation == 'MONOCHROME1':
image = (2 ** dicom.BitsStored - 1) - image
if dicom.ImagerPixelSpacing != [0.139, 0.139]:
zoom_factor = [0.139 / dicom.ImagerPixelSpacing[0], 0.139 / dicom.ImagerPixelSpacing[1]]
image = zoom(image, zoom_factor)
image = image / (2 ** dicom.BitsStored - 1)
# Se l'immagine non Γ¨ quadrata, facciamo padding
if image.shape[0] != image.shape[1]:
diff = abs(image.shape[0] - image.shape[1])
pad_size = diff // 2
if image.shape[0] > image.shape[1]:
padded_image = np.pad(image, ((0, 0), (pad_size, pad_size)))
else:
padded_image = np.pad(image, ((pad_size, pad_size), (0, 0)))
# Resizing a 256x256 e a 512x512
zoom_factor = [256 / padded_image.shape[0], 256 / padded_image.shape[1]]
image_256 = zoom(padded_image, zoom_factor)
frontal = image_256
if frontal.dtype != np.uint8:
frontal2 = (255 * (frontal - frontal.min()) / (frontal.max() - frontal.min())).astype(np.uint8)
frontal = torch.tensor(frontal, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
frontal2 = Image.fromarray(frontal2)
st.write("Frontal Image loaded successfully!")
# Mostra l'immagine caricata
st.image(frontal2, caption="Frontal Image Loaded", use_container_width=True)
if st.session_state['lateral_file']:
dicom = pydicom.dcmread(st.session_state['lateral_file'])
image = dicom.pixel_array
if dicom.PhotometricInterpretation == 'MONOCHROME1':
image = (2 ** dicom.BitsStored - 1) - image
if dicom.ImagerPixelSpacing != [0.139, 0.139]:
zoom_factor = [0.139 / dicom.ImagerPixelSpacing[0], 0.139 / dicom.ImagerPixelSpacing[1]]
image = zoom(image, zoom_factor)
image = image / (2 ** dicom.BitsStored - 1)
# Se l'immagine non Γ¨ quadrata, facciamo padding
if image.shape[0] != image.shape[1]:
diff = abs(image.shape[0] - image.shape[1])
pad_size = diff // 2
if image.shape[0] > image.shape[1]:
padded_image = np.pad(image, ((0, 0), (pad_size, pad_size)))
else:
padded_image = np.pad(image, ((pad_size, pad_size), (0, 0)))
# Resizing a 256x256 e a 512x512
zoom_factor = [256 / padded_image.shape[0], 256 / padded_image.shape[1]]
image_256 = zoom(padded_image, zoom_factor)
lateral = image_256
if lateral.dtype != np.uint8:
lateral2 = (255 * (lateral - lateral.min()) / (lateral.max() - lateral.min())).astype(np.uint8)
lateral = torch.tensor(lateral, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
lateral2 = Image.Frontalmarray(lateral2)
st.write("Lateral Image loaded successfully!")
st.image(lateral2, caption="Lateral Image Loaded", use_container_width=True)
if st.session_state['report']:
report = st.session_state['report']
st.write(f"Loaded Report: {report}")
inputs = []
if "Frontal" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('frontal')
if "Lateral" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('lateral')
if "Report" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('text')
# Ora vediamo cosa c'Γ¨ dopo la freccia
outputs = []
if "Frontal" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('frontal')
if "Lateral" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('lateral')
if "Report" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('text')
# Ultima cosa che va fatta Γ¨ passare allo step 4, prima di farlo perΓ², tutte le variabili che ci servono
# devono essere salvate nello stato della sessione
st.session_state['inputs'] = inputs
st.session_state['outputs'] = outputs
st.session_state['frontal'] = frontal
st.session_state['lateral'] = lateral
st.session_state['report'] = report
st.session_state['generate'] = True
st.session_state['step'] = 4
st.rerun()
with col2:
if st.button("Return to the beginning"):
# Ripristina lo stato della sessione
st.session_state['step'] = 1
st.session_state['selected_option'] = None
st.session_state['selected_option2'] = None
st.session_state['frontal_file'] = None
st.session_state['lateral_file'] = None
st.session_state['report'] = ""
st.rerun()
if st.session_state['step'] == 4:
# Costruzione del prompt
if st.session_state['generate'] is True:
conditioning = []
for inp in st.session_state['inputs']:
if inp == 'frontal':
cim = inference_tester.net.clip_encode_vision(st.session_state['frontal'], encode_type='encode_vision').to(device)
uim = inference_tester.net.clip_encode_vision(torch.zeros_like(st.session_state['frontal']).to(device),
encode_type='encode_vision').to(device)
conditioning.append(torch.cat([uim, cim]))
elif inp == 'lateral':
cim = inference_tester.net.clip_encode_vision(st.session_state['lateral'], encode_type='encode_vision').to(device)
uim = inference_tester.net.clip_encode_vision(torch.zeros_like(st.session_state['lateral']).to(device),
encode_type='encode_vision').to(device)
conditioning.append(torch.cat([uim, cim]))
elif inp == 'text':
ctx = inference_tester.net.clip_encode_text(1 * [st.session_state['report']], encode_type='encode_text').to(device)
utx = inference_tester.net.clip_encode_text(1 * [""], encode_type='encode_text').to(device)
conditioning.append(torch.cat([utx, ctx]))
# Costruzione delle shapes
shapes = []
for out in st.session_state['outputs']:
if out == 'frontal' or out == 'lateral':
shape = [1, 4, 256 // 8, 256 // 8]
shapes.append(shape)
elif out == 'text':
shape = [1, 768]
shapes.append(shape)
progress_bar = st.progress(0)
# Inferenza
z, _ = inference_tester.sampler.sample(
steps=50,
shape=shapes,
condition=conditioning,
unconditional_guidance_scale=7.5,
xtype=st.session_state['outputs'],
condition_types=st.session_state['inputs'],
eta=1,
verbose=False,
mix_weight={'lateral': 1, 'text': 1, 'frontal': 1},
progress_bar=progress_bar)
# Decoder e visualizzazione dei risultati
output_cols = st.columns(len(st.session_state['outputs']))
# Definire due colonne per le immagini
col1, col2 = st.columns(2)
# Iterare sugli output e assegnare le immagini alle colonne corrispondenti
for i, out in enumerate(st.session_state['outputs']):
if out == 'frontal':
x = inference_tester.net.autokl_decode(z[i])
x = torch.clamp((x[0] + 1.0) / 2.0, min=0.0, max=1.0)
im = x[0].cpu().numpy()
with col1: # Mostrare la frontal image nella prima colonna
st.image(im, caption="Generated Frontal Image")
elif out == 'lateral':
x = inference_tester.net.autokl_decode(z[i])
x = torch.clamp((x[0] + 1.0) / 2.0, min=0.0, max=1.0)
im = x[0].cpu().numpy()
with col2: # Mostrare la lateral image nella seconda colonna
st.image(im, caption="Generated Lateral Image")
elif out == 'text':
x = inference_tester.net.optimus_decode(z[i], max_length=100)
x = [a.tolist() for a in x]
rec_text = [inference_tester.net.optimus.tokenizer_decoder.decode(a) for a in x]
rec_text = rec_text[0].replace('<BOS>', '').replace('<EOS>', '')
st.write(f"Generated Report: {rec_text}")
st.write("Generation completed successfully!")
st.session_state['generate'] = False
if st.button("Return to the beginning"):
# Ripristina lo stato della sessione
st.session_state['generate'] = False
st.session_state['step'] = 1
st.session_state['selected_option'] = None
st.session_state['frontal_file'] = None
st.session_state['lateral_file'] = None
st.session_state['report'] = ""
st.session_state['inputs'] = None
st.session_state['outputs'] = None
st.session_state['frontal'] = None
st.session_state['lateral'] = None
st.session_state['report'] = ""
st.rerun()
if st.session_state['step'] == 5:
st.markdown(
f"<h4 style='text-align: justify'><strong>You selected: {st.session_state['selected_option']}</strong></h4>",
unsafe_allow_html=True)
inputs = []
if "Frontal" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('Frontal')
if "Lateral" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('Lateral')
if "Report" in st.session_state['selected_option'].split(" β")[0]:
inputs.append('Report')
outputs = []
if "Frontal" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('Frontal')
if "Lateral" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('Lateral')
if "Report" in st.session_state['selected_option'].split(" β")[1]:
outputs.append('Report')
esempio = esempi[st.session_state['selected_option']]
# Mostra i file associati all'esempio
st.markdown(
"<h3 style='text-align: center'><strong>INPUT:</strong></h3>",
unsafe_allow_html=True)
# Colonne per gli INPUTS
input_cols = st.columns(len(inputs))
for idx, inp in enumerate(inputs):
with input_cols[idx]:
if inp == 'Frontal':
path = "./DEMO/ESEMPI/" + esempio['Frontal']
print(path)
if path.endswith(".tiff"):
im = tifffile.imread(path)
im = np.clip(im, 0, 1)
elif path.endswith(".png"):
im = Image.open(path)
st.image(im, caption="Frontal Image")
elif inp == 'Lateral':
path = "./DEMO/ESEMPI/" + esempio['Lateral']
if path.endswith(".tiff"):
im = tifffile.imread(path)
im = np.clip(im, 0, 1)
elif path.endswith(".png"):
im = Image.open(path)
st.image(im, caption="Lateral Image")
elif inp == 'Report':
st.markdown(
f"<p style='font-size:20px;'><strong>Report:</strong> {esempio['Report']}</p>",
unsafe_allow_html=True
)
st.markdown(
"<h3 style='text-align: center'><strong>OUTPUT:</strong></h3>",
unsafe_allow_html=True)
# Colonne per gli OUTPUTS
output_cols = st.columns(len(outputs))
for idx, out in enumerate(outputs):
with output_cols[idx]:
if out == 'Frontal':
path = "./DEMO/ESEMPI/" + esempio['Frontal']
if path.endswith(".tiff"):
im = tifffile.imread(path)
# facciamo clamp tra 0 e 1
im = np.clip(im, 0, 1)
elif path.endswith(".png"):
im = Image.open(path)
st.image(im, caption="Frontal Image")
elif out == 'Lateral':
path = "./DEMO/ESEMPI/" + esempio['Lateral']
if path.endswith(".tiff"):
im = tifffile.imread(path)
# facciamo clamp tra 0 e 1
im = np.clip(im, 0, 1)
elif path.endswith(".png"):
im = Image.open(path)
st.image(im, caption="Lateral Image")
elif out == 'Report':
st.markdown(
f"<p style='font-size:20px;'><strong>Report:</strong> {esempio['Report']}</p>",
unsafe_allow_html=True
)
# Pulsante per tornare all'inizio
if st.button("Return to the beginning"):
# Ripristina lo stato della sessione
st.session_state['step'] = 1
st.session_state['selected_option'] = None
st.session_state['selected_option2'] = None
st.session_state['frontal_file'] = None
st.session_state['lateral_file'] = None
st.session_state['report'] = ""
st.rerun() |