File size: 14,273 Bytes
9a7fe1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import random
import torch
from collections import OrderedDict

import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
from torchvision import transforms as tvtrans

from decord import VideoReader, cpu, gpu


###############
# text helper #
###############


def remove_duplicate_word(tx):
    def combine_words(input, length):
        combined_inputs = []
        if len(splitted_input) > 1:
            for i in range(len(input) - 1):
                combined_inputs.append(input[i] + " " + last_word_of(splitted_input[i + 1],
                                                                     length))  # add the last word of the right-neighbour (overlapping) sequence (before it has expanded), which is the next word in the original sentence
        return combined_inputs, length + 1

    def remove_duplicates(input, length):
        bool_broke = False  #this means we didn't find any duplicates here
        for i in range(len(input) - length):
            if input[i] == input[i + length]:  #found a duplicate piece of sentence!
                for j in range(0, length):  #remove the overlapping sequences in reverse order
                    del input[i + length - j]
                bool_broke = True
                break  #break the for loop as the loop length does not matches the length of splitted_input anymore as we removed elements
        if bool_broke:
            return remove_duplicates(input,
                                     length)  #if we found a duplicate, look for another duplicate of the same length
        return input

    def last_word_of(input, length):
        splitted = input.split(" ")
        if len(splitted) == 0:
            return input
        else:
            return splitted[length - 1]

    def split_and_puncsplit(text):
        tx = text.split(" ")
        txnew = []
        for txi in tx:
            txqueue = []
            while True:
                if txi[0] in '([{':
                    txqueue.extend([txi[:1], '<puncnext>'])
                    txi = txi[1:]
                    if len(txi) == 0:
                        break
                else:
                    break
            txnew += txqueue
            txstack = []
            if len(txi) == 0:
                continue
            while True:
                if txi[-1] in '?!.,:;}])':
                    txstack = ['<puncnext>', txi[-1:]] + txstack
                    txi = txi[:-1]
                    if len(txi) == 0:
                        break
                else:
                    break
            if len(txi) != 0:
                txnew += [txi]
            txnew += txstack
        return txnew

    if tx == '':
        return tx

    splitted_input = split_and_puncsplit(tx)
    word_length = 1
    intermediate_output = False
    while len(splitted_input) > 1:
        splitted_input = remove_duplicates(splitted_input, word_length)
        if len(splitted_input) > 1:
            splitted_input, word_length = combine_words(splitted_input, word_length)
        if intermediate_output:
            print(splitted_input)
            print(word_length)
    output = splitted_input[0]
    output = output.replace(' <puncnext> ', '')
    return output


#################
# vision helper #
#################


def regularize_image(x, image_size=512):
    if isinstance(x, str):
        x = Image.open(x)
        size = min(x.size)
    elif isinstance(x, Image.Image):
        x = x.convert('RGB')
        size = min(x.size)
    elif isinstance(x, np.ndarray):
        x = Image.fromarray(x).convert('RGB')
        size = min(x.size)
    elif isinstance(x, torch.Tensor):
        # normalize to [0, 1]
        size = min(x.size()[1:])
    else:
        assert False, 'Unknown image type'

    """transforms = T.Compose([
        T.RandomCrop(size),
        T.Resize(
            (image_size, image_size),
            interpolation=BICUBIC,
        ),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
    ])
    x = transforms(x)
    assert (x.shape[1] == image_size) & (x.shape[2] == image_size), \
        'Wrong image size'
    """
    x = x * 2 - 1
    return x


def center_crop(img, new_width=None, new_height=None):
    width = img.shape[2]
    height = img.shape[1]

    if new_width is None:
        new_width = min(width, height)

    if new_height is None:
        new_height = min(width, height)

    left = int(np.ceil((width - new_width) / 2))
    right = width - int(np.floor((width - new_width) / 2))

    top = int(np.ceil((height - new_height) / 2))
    bottom = height - int(np.floor((height - new_height) / 2))
    if len(img.shape) == 3:
        center_cropped_img = img[:, top:bottom, left:right]
    else:
        center_cropped_img = img[:, top:bottom, left:right, ...]

    return center_cropped_img


def _transform(n_px):
    return Compose([
        Resize([n_px, n_px], interpolation=T.InterpolationMode.BICUBIC), ])


def regularize_video(video, image_size=256):
    min_shape = min(video.shape[1:3])
    video = center_crop(video, min_shape, min_shape)
    video = torch.from_numpy(video).permute(0, 3, 1, 2)
    video = _transform(image_size)(video)
    video = video / 255.0 * 2.0 - 1.0
    return video.permute(1, 0, 2, 3)


def time_to_indices(video_reader, time):
    times = video_reader.get_frame_timestamp(range(len(video_reader))).mean(-1)
    indices = np.searchsorted(times, time)
    # Use `np.bitwise_or` so it works both with scalars and numpy arrays.
    return np.where(np.bitwise_or(indices == 0, times[indices] - time <= time - times[indices - 1]), indices,
                    indices - 1)


def load_video(video_path, sample_duration=8.0, num_frames=8):
    sample_duration = 4.0
    num_frames = 4

    vr = VideoReader(video_path, ctx=cpu(0))
    framerate = vr.get_avg_fps()
    video_frame_len = len(vr)
    video_len = video_frame_len / framerate
    sample_duration = min(sample_duration, video_len)

    if video_len > sample_duration:
        s = random.random() * (video_len - sample_duration)
        t = s + sample_duration
        start, end = time_to_indices(vr, [s, t])
        end = min(video_frame_len - 1, end)
        start = min(start, end - 1)
        downsamlp_indices = np.linspace(start, end, num_frames, endpoint=True).astype(int).tolist()
    else:
        downsamlp_indices = np.linspace(0, video_frame_len - 1, num_frames, endpoint=True).astype(int).tolist()

    video = vr.get_batch(downsamlp_indices).asnumpy()
    return video


###############
# some helper #
###############

def atomic_save(cfg, net, opt, step, path):
    if isinstance(net, (torch.nn.DataParallel,
                        torch.nn.parallel.DistributedDataParallel)):
        netm = net.module
    else:
        netm = net
    sd = netm.state_dict()
    slimmed_sd = [(ki, vi) for ki, vi in sd.items()
                  if ki.find('first_stage_model') != 0 and ki.find('cond_stage_model') != 0]

    checkpoint = {
        "config": cfg,
        "state_dict": OrderedDict(slimmed_sd),
        "step": step}
    if opt is not None:
        checkpoint['optimizer_states'] = opt.state_dict()
    import io
    import fsspec
    bytesbuffer = io.BytesIO()
    torch.save(checkpoint, bytesbuffer)
    with fsspec.open(path, "wb") as f:
        f.write(bytesbuffer.getvalue())


def load_state_dict(net, cfg):
    pretrained_pth_full = cfg.get('pretrained_pth_full', None)
    pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
    pretrained_pth = cfg.get('pretrained_pth', None)
    pretrained_ckpt = cfg.get('pretrained_ckpt', None)
    pretrained_pth_dm = cfg.get('pretrained_pth_dm', None)
    pretrained_pth_ema = cfg.get('pretrained_pth_ema', None)
    strict_sd = cfg.get('strict_sd', False)
    errmsg = "Overlapped model state_dict! This is undesired behavior!"

    if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
        assert (pretrained_pth is None) and \
               (pretrained_ckpt is None) and \
               (pretrained_pth_dm is None) and \
               (pretrained_pth_ema is None), errmsg
        if pretrained_pth_full is not None:
            target_file = pretrained_pth_full
            sd = torch.load(target_file, map_location='cpu')
            assert pretrained_ckpt is None, errmsg
        else:
            target_file = pretrained_ckpt_full
            sd = torch.load(target_file, map_location='cpu')['state_dict']
        print('Load full model from [{}] strict [{}].'.format(
            target_file, strict_sd))
        net.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth is not None or pretrained_ckpt is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth_dm is None) and \
               (pretrained_pth_ema is None), errmsg
        if pretrained_pth is not None:
            target_file = pretrained_pth
            sd = torch.load(target_file, map_location='cpu')
            assert pretrained_ckpt is None, errmsg
        else:
            target_file = pretrained_ckpt
            sd = torch.load(target_file, map_location='cpu')['state_dict']
        print('Load model from [{}] strict [{}].'.format(
            target_file, strict_sd))
        sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
                    if ki.find('first_stage_model') == 0 or ki.find('cond_stage_model') == 0]
        sd.update(OrderedDict(sd_extra))
        net.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth_dm is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth is None) and \
               (pretrained_ckpt is None), errmsg
        print('Load diffusion model from [{}] strict [{}].'.format(
            pretrained_pth_dm, strict_sd))
        sd = torch.load(pretrained_pth_dm, map_location='cpu')
        net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)

    if pretrained_pth_ema is not None:
        assert (pretrained_ckpt_full is None) and \
               (pretrained_pth_full is None) and \
               (pretrained_pth is None) and \
               (pretrained_ckpt is None), errmsg
        print('Load unet ema model from [{}] strict [{}].'.format(
            pretrained_pth_ema, strict_sd))
        sd = torch.load(pretrained_pth_ema, map_location='cpu')
        net.model_ema.load_state_dict(sd, strict=strict_sd)


def auto_merge_imlist(imlist, max=64):
    imlist = imlist[0:max]
    h, w = imlist[0].shape[0:2]
    num_images = len(imlist)
    num_row = int(np.sqrt(num_images))
    num_col = num_images // num_row + 1 if num_images % num_row != 0 else num_images // num_row
    canvas = np.zeros([num_row * h, num_col * w, 3], dtype=np.uint8)
    for idx, im in enumerate(imlist):
        hi = (idx // num_col) * h
        wi = (idx % num_col) * w
        canvas[hi:hi + h, wi:wi + w, :] = im
    return canvas


def latent2im(net, latent):
    single_input = len(latent.shape) == 3
    if single_input:
        latent = latent[None]
    im = net.decode_image(latent.to(net.device))
    im = torch.clamp((im + 1.0) / 2.0, min=0.0, max=1.0)
    im = [tvtrans.ToPILImage()(i) for i in im]
    if single_input:
        im = im[0]
    return im


def im2latent(net, im):
    single_input = not isinstance(im, list)
    if single_input:
        im = [im]
    im = torch.stack([tvtrans.ToTensor()(i) for i in im], dim=0)
    im = (im * 2 - 1).to(net.device)
    z = net.encode_image(im)
    if single_input:
        z = z[0]
    return z


class color_adjust(object):
    def __init__(self, ref_from, ref_to):
        x0, m0, std0 = self.get_data_and_stat(ref_from)
        x1, m1, std1 = self.get_data_and_stat(ref_to)
        self.ref_from_stat = (m0, std0)
        self.ref_to_stat = (m1, std1)
        self.ref_from = self.preprocess(x0).reshape(-1, 3)
        self.ref_to = x1.reshape(-1, 3)

    def get_data_and_stat(self, x):
        if isinstance(x, str):
            x = np.array(PIL.Image.open(x))
        elif isinstance(x, PIL.Image.Image):
            x = np.array(x)
        elif isinstance(x, torch.Tensor):
            x = torch.clamp(x, min=0.0, max=1.0)
            x = np.array(tvtrans.ToPILImage()(x))
        elif isinstance(x, np.ndarray):
            pass
        else:
            raise ValueError
        x = x.astype(float)
        m = np.reshape(x, (-1, 3)).mean(0)
        s = np.reshape(x, (-1, 3)).std(0)
        return x, m, s

    def preprocess(self, x):
        m0, s0 = self.ref_from_stat
        m1, s1 = self.ref_to_stat
        y = ((x - m0) / s0) * s1 + m1
        return y

    def __call__(self, xin, keep=0, simple=False):
        xin, _, _ = self.get_data_and_stat(xin)
        x = self.preprocess(xin)
        if simple:
            y = (x * (1 - keep) + xin * keep)
            y = np.clip(y, 0, 255).astype(np.uint8)
            return y

        h, w = x.shape[:2]
        x = x.reshape(-1, 3)
        y = []
        for chi in range(3):
            yi = self.pdf_transfer_1d(self.ref_from[:, chi], self.ref_to[:, chi], x[:, chi])
            y.append(yi)

        y = np.stack(y, axis=1)
        y = y.reshape(h, w, 3)
        y = (y.astype(float) * (1 - keep) + xin.astype(float) * keep)
        y = np.clip(y, 0, 255).astype(np.uint8)
        return y

    def pdf_transfer_1d(self, arr_fo, arr_to, arr_in, n=600):
        arr = np.concatenate((arr_fo, arr_to))
        min_v = arr.min() - 1e-6
        max_v = arr.max() + 1e-6
        min_vto = arr_to.min() - 1e-6
        max_vto = arr_to.max() + 1e-6
        xs = np.array(
            [min_v + (max_v - min_v) * i / n for i in range(n + 1)])
        hist_fo, _ = np.histogram(arr_fo, xs)
        hist_to, _ = np.histogram(arr_to, xs)
        xs = xs[:-1]
        # compute probability distribution
        cum_fo = np.cumsum(hist_fo)
        cum_to = np.cumsum(hist_to)
        d_fo = cum_fo / cum_fo[-1]
        d_to = cum_to / cum_to[-1]
        # transfer
        t_d = np.interp(d_fo, d_to, xs)
        t_d[d_fo <= d_to[0]] = min_vto
        t_d[d_fo >= d_to[-1]] = max_vto
        arr_out = np.interp(arr_in, xs, t_d)
        return arr_out