File size: 14,273 Bytes
9a7fe1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import random
import torch
from collections import OrderedDict
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
from torchvision import transforms as tvtrans
from decord import VideoReader, cpu, gpu
###############
# text helper #
###############
def remove_duplicate_word(tx):
def combine_words(input, length):
combined_inputs = []
if len(splitted_input) > 1:
for i in range(len(input) - 1):
combined_inputs.append(input[i] + " " + last_word_of(splitted_input[i + 1],
length)) # add the last word of the right-neighbour (overlapping) sequence (before it has expanded), which is the next word in the original sentence
return combined_inputs, length + 1
def remove_duplicates(input, length):
bool_broke = False #this means we didn't find any duplicates here
for i in range(len(input) - length):
if input[i] == input[i + length]: #found a duplicate piece of sentence!
for j in range(0, length): #remove the overlapping sequences in reverse order
del input[i + length - j]
bool_broke = True
break #break the for loop as the loop length does not matches the length of splitted_input anymore as we removed elements
if bool_broke:
return remove_duplicates(input,
length) #if we found a duplicate, look for another duplicate of the same length
return input
def last_word_of(input, length):
splitted = input.split(" ")
if len(splitted) == 0:
return input
else:
return splitted[length - 1]
def split_and_puncsplit(text):
tx = text.split(" ")
txnew = []
for txi in tx:
txqueue = []
while True:
if txi[0] in '([{':
txqueue.extend([txi[:1], '<puncnext>'])
txi = txi[1:]
if len(txi) == 0:
break
else:
break
txnew += txqueue
txstack = []
if len(txi) == 0:
continue
while True:
if txi[-1] in '?!.,:;}])':
txstack = ['<puncnext>', txi[-1:]] + txstack
txi = txi[:-1]
if len(txi) == 0:
break
else:
break
if len(txi) != 0:
txnew += [txi]
txnew += txstack
return txnew
if tx == '':
return tx
splitted_input = split_and_puncsplit(tx)
word_length = 1
intermediate_output = False
while len(splitted_input) > 1:
splitted_input = remove_duplicates(splitted_input, word_length)
if len(splitted_input) > 1:
splitted_input, word_length = combine_words(splitted_input, word_length)
if intermediate_output:
print(splitted_input)
print(word_length)
output = splitted_input[0]
output = output.replace(' <puncnext> ', '')
return output
#################
# vision helper #
#################
def regularize_image(x, image_size=512):
if isinstance(x, str):
x = Image.open(x)
size = min(x.size)
elif isinstance(x, Image.Image):
x = x.convert('RGB')
size = min(x.size)
elif isinstance(x, np.ndarray):
x = Image.fromarray(x).convert('RGB')
size = min(x.size)
elif isinstance(x, torch.Tensor):
# normalize to [0, 1]
size = min(x.size()[1:])
else:
assert False, 'Unknown image type'
"""transforms = T.Compose([
T.RandomCrop(size),
T.Resize(
(image_size, image_size),
interpolation=BICUBIC,
),
T.RandomHorizontalFlip(),
T.ToTensor(),
])
x = transforms(x)
assert (x.shape[1] == image_size) & (x.shape[2] == image_size), \
'Wrong image size'
"""
x = x * 2 - 1
return x
def center_crop(img, new_width=None, new_height=None):
width = img.shape[2]
height = img.shape[1]
if new_width is None:
new_width = min(width, height)
if new_height is None:
new_height = min(width, height)
left = int(np.ceil((width - new_width) / 2))
right = width - int(np.floor((width - new_width) / 2))
top = int(np.ceil((height - new_height) / 2))
bottom = height - int(np.floor((height - new_height) / 2))
if len(img.shape) == 3:
center_cropped_img = img[:, top:bottom, left:right]
else:
center_cropped_img = img[:, top:bottom, left:right, ...]
return center_cropped_img
def _transform(n_px):
return Compose([
Resize([n_px, n_px], interpolation=T.InterpolationMode.BICUBIC), ])
def regularize_video(video, image_size=256):
min_shape = min(video.shape[1:3])
video = center_crop(video, min_shape, min_shape)
video = torch.from_numpy(video).permute(0, 3, 1, 2)
video = _transform(image_size)(video)
video = video / 255.0 * 2.0 - 1.0
return video.permute(1, 0, 2, 3)
def time_to_indices(video_reader, time):
times = video_reader.get_frame_timestamp(range(len(video_reader))).mean(-1)
indices = np.searchsorted(times, time)
# Use `np.bitwise_or` so it works both with scalars and numpy arrays.
return np.where(np.bitwise_or(indices == 0, times[indices] - time <= time - times[indices - 1]), indices,
indices - 1)
def load_video(video_path, sample_duration=8.0, num_frames=8):
sample_duration = 4.0
num_frames = 4
vr = VideoReader(video_path, ctx=cpu(0))
framerate = vr.get_avg_fps()
video_frame_len = len(vr)
video_len = video_frame_len / framerate
sample_duration = min(sample_duration, video_len)
if video_len > sample_duration:
s = random.random() * (video_len - sample_duration)
t = s + sample_duration
start, end = time_to_indices(vr, [s, t])
end = min(video_frame_len - 1, end)
start = min(start, end - 1)
downsamlp_indices = np.linspace(start, end, num_frames, endpoint=True).astype(int).tolist()
else:
downsamlp_indices = np.linspace(0, video_frame_len - 1, num_frames, endpoint=True).astype(int).tolist()
video = vr.get_batch(downsamlp_indices).asnumpy()
return video
###############
# some helper #
###############
def atomic_save(cfg, net, opt, step, path):
if isinstance(net, (torch.nn.DataParallel,
torch.nn.parallel.DistributedDataParallel)):
netm = net.module
else:
netm = net
sd = netm.state_dict()
slimmed_sd = [(ki, vi) for ki, vi in sd.items()
if ki.find('first_stage_model') != 0 and ki.find('cond_stage_model') != 0]
checkpoint = {
"config": cfg,
"state_dict": OrderedDict(slimmed_sd),
"step": step}
if opt is not None:
checkpoint['optimizer_states'] = opt.state_dict()
import io
import fsspec
bytesbuffer = io.BytesIO()
torch.save(checkpoint, bytesbuffer)
with fsspec.open(path, "wb") as f:
f.write(bytesbuffer.getvalue())
def load_state_dict(net, cfg):
pretrained_pth_full = cfg.get('pretrained_pth_full', None)
pretrained_ckpt_full = cfg.get('pretrained_ckpt_full', None)
pretrained_pth = cfg.get('pretrained_pth', None)
pretrained_ckpt = cfg.get('pretrained_ckpt', None)
pretrained_pth_dm = cfg.get('pretrained_pth_dm', None)
pretrained_pth_ema = cfg.get('pretrained_pth_ema', None)
strict_sd = cfg.get('strict_sd', False)
errmsg = "Overlapped model state_dict! This is undesired behavior!"
if pretrained_pth_full is not None or pretrained_ckpt_full is not None:
assert (pretrained_pth is None) and \
(pretrained_ckpt is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth_full is not None:
target_file = pretrained_pth_full
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt_full
sd = torch.load(target_file, map_location='cpu')['state_dict']
print('Load full model from [{}] strict [{}].'.format(
target_file, strict_sd))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth is not None or pretrained_ckpt is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth_dm is None) and \
(pretrained_pth_ema is None), errmsg
if pretrained_pth is not None:
target_file = pretrained_pth
sd = torch.load(target_file, map_location='cpu')
assert pretrained_ckpt is None, errmsg
else:
target_file = pretrained_ckpt
sd = torch.load(target_file, map_location='cpu')['state_dict']
print('Load model from [{}] strict [{}].'.format(
target_file, strict_sd))
sd_extra = [(ki, vi) for ki, vi in net.state_dict().items() \
if ki.find('first_stage_model') == 0 or ki.find('cond_stage_model') == 0]
sd.update(OrderedDict(sd_extra))
net.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_dm is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print('Load diffusion model from [{}] strict [{}].'.format(
pretrained_pth_dm, strict_sd))
sd = torch.load(pretrained_pth_dm, map_location='cpu')
net.model.diffusion_model.load_state_dict(sd, strict=strict_sd)
if pretrained_pth_ema is not None:
assert (pretrained_ckpt_full is None) and \
(pretrained_pth_full is None) and \
(pretrained_pth is None) and \
(pretrained_ckpt is None), errmsg
print('Load unet ema model from [{}] strict [{}].'.format(
pretrained_pth_ema, strict_sd))
sd = torch.load(pretrained_pth_ema, map_location='cpu')
net.model_ema.load_state_dict(sd, strict=strict_sd)
def auto_merge_imlist(imlist, max=64):
imlist = imlist[0:max]
h, w = imlist[0].shape[0:2]
num_images = len(imlist)
num_row = int(np.sqrt(num_images))
num_col = num_images // num_row + 1 if num_images % num_row != 0 else num_images // num_row
canvas = np.zeros([num_row * h, num_col * w, 3], dtype=np.uint8)
for idx, im in enumerate(imlist):
hi = (idx // num_col) * h
wi = (idx % num_col) * w
canvas[hi:hi + h, wi:wi + w, :] = im
return canvas
def latent2im(net, latent):
single_input = len(latent.shape) == 3
if single_input:
latent = latent[None]
im = net.decode_image(latent.to(net.device))
im = torch.clamp((im + 1.0) / 2.0, min=0.0, max=1.0)
im = [tvtrans.ToPILImage()(i) for i in im]
if single_input:
im = im[0]
return im
def im2latent(net, im):
single_input = not isinstance(im, list)
if single_input:
im = [im]
im = torch.stack([tvtrans.ToTensor()(i) for i in im], dim=0)
im = (im * 2 - 1).to(net.device)
z = net.encode_image(im)
if single_input:
z = z[0]
return z
class color_adjust(object):
def __init__(self, ref_from, ref_to):
x0, m0, std0 = self.get_data_and_stat(ref_from)
x1, m1, std1 = self.get_data_and_stat(ref_to)
self.ref_from_stat = (m0, std0)
self.ref_to_stat = (m1, std1)
self.ref_from = self.preprocess(x0).reshape(-1, 3)
self.ref_to = x1.reshape(-1, 3)
def get_data_and_stat(self, x):
if isinstance(x, str):
x = np.array(PIL.Image.open(x))
elif isinstance(x, PIL.Image.Image):
x = np.array(x)
elif isinstance(x, torch.Tensor):
x = torch.clamp(x, min=0.0, max=1.0)
x = np.array(tvtrans.ToPILImage()(x))
elif isinstance(x, np.ndarray):
pass
else:
raise ValueError
x = x.astype(float)
m = np.reshape(x, (-1, 3)).mean(0)
s = np.reshape(x, (-1, 3)).std(0)
return x, m, s
def preprocess(self, x):
m0, s0 = self.ref_from_stat
m1, s1 = self.ref_to_stat
y = ((x - m0) / s0) * s1 + m1
return y
def __call__(self, xin, keep=0, simple=False):
xin, _, _ = self.get_data_and_stat(xin)
x = self.preprocess(xin)
if simple:
y = (x * (1 - keep) + xin * keep)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
h, w = x.shape[:2]
x = x.reshape(-1, 3)
y = []
for chi in range(3):
yi = self.pdf_transfer_1d(self.ref_from[:, chi], self.ref_to[:, chi], x[:, chi])
y.append(yi)
y = np.stack(y, axis=1)
y = y.reshape(h, w, 3)
y = (y.astype(float) * (1 - keep) + xin.astype(float) * keep)
y = np.clip(y, 0, 255).astype(np.uint8)
return y
def pdf_transfer_1d(self, arr_fo, arr_to, arr_in, n=600):
arr = np.concatenate((arr_fo, arr_to))
min_v = arr.min() - 1e-6
max_v = arr.max() + 1e-6
min_vto = arr_to.min() - 1e-6
max_vto = arr_to.max() + 1e-6
xs = np.array(
[min_v + (max_v - min_v) * i / n for i in range(n + 1)])
hist_fo, _ = np.histogram(arr_fo, xs)
hist_to, _ = np.histogram(arr_to, xs)
xs = xs[:-1]
# compute probability distribution
cum_fo = np.cumsum(hist_fo)
cum_to = np.cumsum(hist_to)
d_fo = cum_fo / cum_fo[-1]
d_to = cum_to / cum_to[-1]
# transfer
t_d = np.interp(d_fo, d_to, xs)
t_d[d_fo <= d_to[0]] = min_vto
t_d[d_fo >= d_to[-1]] = max_vto
arr_out = np.interp(arr_in, xs, t_d)
return arr_out
|