|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
import numpy.random as npr |
|
import copy |
|
from functools import partial |
|
from contextlib import contextmanager |
|
|
|
from .common.get_model import get_model, register |
|
from .ema import LitEma |
|
|
|
version = '0' |
|
symbol = 'sd' |
|
|
|
|
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if schedule == "linear": |
|
betas = ( |
|
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 |
|
) |
|
|
|
elif schedule == "cosine": |
|
timesteps = ( |
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s |
|
) |
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2 |
|
alphas = torch.cos(alphas).pow(2) |
|
alphas = alphas / alphas[0] |
|
betas = 1 - alphas[1:] / alphas[:-1] |
|
betas = np.clip(betas, a_min=0, a_max=0.999) |
|
|
|
elif schedule == "sqrt_linear": |
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) |
|
elif schedule == "sqrt": |
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 |
|
else: |
|
raise ValueError(f"schedule '{schedule}' unknown.") |
|
return betas.numpy() |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def highlight_print(info): |
|
print('') |
|
print(''.join(['#']*(len(info)+4))) |
|
print('# '+info+' #') |
|
print(''.join(['#']*(len(info)+4))) |
|
print('') |
|
|
|
|
|
class DDPM(nn.Module): |
|
def __init__(self, |
|
unet_config, |
|
timesteps=1000, |
|
use_ema=True, |
|
|
|
beta_schedule="linear", |
|
beta_linear_start=1e-4, |
|
beta_linear_end=2e-2, |
|
loss_type="l2", |
|
|
|
clip_denoised=True, |
|
cosine_s=8e-3, |
|
given_betas=None, |
|
|
|
l_simple_weight=1., |
|
original_elbo_weight=0., |
|
|
|
v_posterior=0., |
|
parameterization="eps", |
|
use_positional_encodings=False, |
|
learn_logvar=False, |
|
logvar_init=0, ): |
|
|
|
super().__init__() |
|
assert parameterization in ["eps", "x0"], \ |
|
'currently only supporting "eps" and "x0"' |
|
self.parameterization = parameterization |
|
highlight_print("Running in {} mode".format(self.parameterization)) |
|
|
|
self.cond_stage_model = None |
|
self.clip_denoised = clip_denoised |
|
self.use_positional_encodings = use_positional_encodings |
|
|
|
from collections import OrderedDict |
|
self.model = nn.Sequential(OrderedDict([('diffusion_model', get_model()(unet_config))])) |
|
|
|
self.use_ema = use_ema |
|
if self.use_ema: |
|
self.model_ema = LitEma(self.model) |
|
print_log(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") |
|
|
|
self.v_posterior = v_posterior |
|
self.l_simple_weight = l_simple_weight |
|
self.original_elbo_weight = original_elbo_weight |
|
|
|
self.register_schedule( |
|
given_betas=given_betas, |
|
beta_schedule=beta_schedule, |
|
timesteps=timesteps, |
|
linear_start=beta_linear_start, |
|
linear_end=beta_linear_end, |
|
cosine_s=cosine_s) |
|
|
|
self.loss_type = loss_type |
|
self.learn_logvar = learn_logvar |
|
self.logvar = torch.full( |
|
fill_value=logvar_init, size=(self.num_timesteps,)) |
|
if self.learn_logvar: |
|
self.logvar = nn.Parameter(self.logvar, requires_grad=True) |
|
|
|
def register_schedule(self, |
|
given_betas=None, |
|
beta_schedule="linear", |
|
timesteps=1000, |
|
linear_start=1e-4, |
|
linear_end=2e-2, |
|
cosine_s=8e-3): |
|
if given_betas is not None: |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, |
|
cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
assert alphas_cumprod.shape[0] == self.num_timesteps, \ |
|
'alphas have to be defined for each timestep' |
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32) |
|
|
|
self.register_buffer('betas', to_torch(betas)) |
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) |
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) |
|
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) |
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) |
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) |
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) |
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) |
|
|
|
|
|
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( |
|
1. - alphas_cumprod) + self.v_posterior * betas |
|
|
|
self.register_buffer('posterior_variance', to_torch(posterior_variance)) |
|
|
|
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) |
|
self.register_buffer('posterior_mean_coef1', to_torch( |
|
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) |
|
self.register_buffer('posterior_mean_coef2', to_torch( |
|
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) |
|
|
|
if self.parameterization == "eps": |
|
lvlb_weights = self.betas ** 2 / ( |
|
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) |
|
elif self.parameterization == "x0": |
|
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) |
|
else: |
|
raise NotImplementedError("mu not supported") |
|
|
|
lvlb_weights[0] = lvlb_weights[1] |
|
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) |
|
assert not torch.isnan(self.lvlb_weights).all() |
|
|
|
@contextmanager |
|
def ema_scope(self, context=None): |
|
if self.use_ema: |
|
self.model_ema.store(self.model.parameters()) |
|
self.model_ema.copy_to(self.model) |
|
if context is not None: |
|
print_log(f"{context}: Switched to EMA weights") |
|
try: |
|
yield None |
|
finally: |
|
if self.use_ema: |
|
self.model_ema.restore(self.model.parameters()) |
|
if context is not None: |
|
print_log(f"{context}: Restored training weights") |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) |
|
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def predict_start_from_noise(self, x_t, t, noise): |
|
value1 = extract_into_tensor( |
|
self.sqrt_recip_alphas_cumprod, t, x_t.shape) |
|
value2 = extract_into_tensor( |
|
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
return value1*x_t -value2*noise |
|
|
|
def q_posterior(self, x_start, x_t, t): |
|
posterior_mean = ( |
|
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + |
|
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, x, t, clip_denoised: bool): |
|
model_out = self.model(x, t) |
|
if self.parameterization == "eps": |
|
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) |
|
elif self.parameterization == "x0": |
|
x_recon = model_out |
|
if clip_denoised: |
|
x_recon.clamp_(-1., 1.) |
|
|
|
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) |
|
return model_mean, posterior_variance, posterior_log_variance |
|
|
|
@torch.no_grad() |
|
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): |
|
b, *_, device = *x.shape, x.device |
|
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) |
|
noise = noise_like(x.shape, device, repeat_noise) |
|
|
|
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) |
|
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise |
|
|
|
@torch.no_grad() |
|
def p_sample_loop(self, shape, return_intermediates=False): |
|
device = self.betas.device |
|
b = shape[0] |
|
img = torch.randn(shape, device=device) |
|
intermediates = [img] |
|
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): |
|
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), |
|
clip_denoised=self.clip_denoised) |
|
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: |
|
intermediates.append(img) |
|
if return_intermediates: |
|
return img, intermediates |
|
return img |
|
|
|
@torch.no_grad() |
|
def sample(self, batch_size=16, return_intermediates=False): |
|
image_size = self.image_size |
|
channels = self.channels |
|
return self.p_sample_loop((batch_size, channels, image_size, image_size), |
|
return_intermediates=return_intermediates) |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
noise = torch.randn_like(x_start) if noise is None else noise |
|
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + |
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) |
|
|
|
def get_loss(self, pred, target, mean=True): |
|
if self.loss_type == 'l1': |
|
loss = (target - pred).abs() |
|
if mean: |
|
loss = loss.mean() |
|
elif self.loss_type == 'l2': |
|
if mean: |
|
loss = torch.nn.functional.mse_loss(target, pred) |
|
else: |
|
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') |
|
else: |
|
raise NotImplementedError("unknown loss type '{loss_type}'") |
|
|
|
return loss |
|
|
|
def p_losses(self, x_start, t, noise=None): |
|
noise = default(noise, lambda: torch.randn_like(x_start)) |
|
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) |
|
model_out = self.model(x_noisy, t) |
|
|
|
loss_dict = {} |
|
if self.parameterization == "eps": |
|
target = noise |
|
elif self.parameterization == "x0": |
|
target = x_start |
|
else: |
|
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") |
|
|
|
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) |
|
|
|
log_prefix = 'train' if self.training else 'val' |
|
|
|
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) |
|
loss_simple = loss.mean() * self.l_simple_weight |
|
|
|
loss_vlb = (self.lvlb_weights[t] * loss).mean() |
|
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) |
|
|
|
loss = loss_simple + self.original_elbo_weight * loss_vlb |
|
|
|
loss_dict.update({f'{log_prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
def forward(self, x, *args, **kwargs): |
|
|
|
|
|
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() |
|
return self.p_losses(x, t, *args, **kwargs) |
|
|
|
def on_train_batch_end(self, *args, **kwargs): |
|
if self.use_ema: |
|
self.model_ema(self.model) |
|
|