from typing import List import os import torch import torch.nn as nn import numpy as np from functools import partial from core.models.common.get_model import register from einops import rearrange from transformers import CLIPTokenizer, CLIPTextModel from .clip_modules import CLIPProcessor, CLIPModel, CLIPTokenizer, CLIPConfig version = '0' symbol = 'clip' class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError @register('clip_text_frozen', version) class FrozenCLIPTextEmbedder(AbstractEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 super().__init__() self.tokenizer = CLIPTokenizer.from_pretrained(version) self.transformer = CLIPTextModel.from_pretrained(version) self.device = device self.max_length = max_length def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) outputs = self.transformer(input_ids=tokens) z = outputs.last_hidden_state return z def encode(self, text): return self(text) @register('clip_frozen', version) class FrozenCLIP(AbstractEncoder): def __init__(self, version="openai/clip-vit-large-patch14", max_length=77, encode_type='encode_text', fp16=False, data_dir='.'): super().__init__() self.tokenizer = CLIPTokenizer.from_pretrained(version) self.processor = CLIPProcessor.from_pretrained(version) config = CLIPConfig.from_pretrained(version) self.model = CLIPModel(config, add_temporal_attention=True) self.max_length = max_length self.encode_type = encode_type self.fp16 = fp16 @property def dtype(self): return torch.float32 @property def device(self): return self.model.text_projection.weight.device def get_device(self): # A trick to get device return self.model.text_projection.weight.device def freeze(self, modules): for module in modules: for param in module.parameters(): param.requires_grad = False def unfreeze(self, modules): for module in modules: for param in module.parameters(): param.requires_grad = True def encode_text_pooled(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.get_device()) outputs = self.model.get_text_features(input_ids=tokens) return outputs def encode_vision_pooled(self, images): inputs = self.processor(images=images, return_tensors="pt") pixels = inputs['pixel_values'].half() if self.fp16 else inputs['pixel_values'] pixels = pixels.to(self.get_device()) return self.model.get_image_features(pixel_values=pixels) def encode_text_noproj(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.get_device()) if self.dtype == torch.half: tokens = tokens.short() outputs = self.model.text_model(input_ids=tokens) return outputs.last_hidden_state def encode_vision_noproj(self, vision_inputs): # vision_inputs = ((vision_inputs + 1) / 2).to('cpu').numpy() vision_inputs = vision_inputs.to('cpu').numpy() if vision_inputs.ndim == 5: num_frames = vision_inputs.shape[2] vision_inputs = rearrange(vision_inputs, 'b c f h w -> (b f) h w c') else: num_frames = 1 vision_inputs = rearrange(vision_inputs, 'b c h w -> b h w c') vision_inputs = [vi for vi in vision_inputs] inputs = self.processor(images=vision_inputs, return_tensors="pt") pixels = inputs['pixel_values'].to(self.dtype).to(self.device) if num_frames > 1: pixels = rearrange(pixels, '(b f) h w c -> b f h w c', f=num_frames) outputs = self.model.vision_model(pixel_values=pixels) return outputs def encode_text(self, text): if isinstance(text, List): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.get_device()) else: tokens = text outputs = self.model.text_model(input_ids=tokens) z_pooled = outputs.pooler_output z_pooled = self.model.text_projection(z_pooled) z_pooled = z_pooled / torch.norm(z_pooled, dim=-1, keepdim=True) return z_pooled.unsqueeze(1) def encode_vision(self, images): z = self.encode_vision_noproj(images) z_pooled = z.pooler_output z_pooled = self.model.visual_projection(z_pooled) z_pooled = z_pooled / torch.norm(z_pooled, dim=-1, keepdim=True) return z_pooled.unsqueeze(1) def encode(self, *args, **kwargs): return getattr(self, self.encode_type)(*args, **kwargs) def forward(self, input, encode_type): if encode_type == 'encode_text': return self.encode_text(input) elif encode_type == 'encode_vision': # Se il numero di canali รจ 1, copiamo l'immagine su 3 canali essendo un'immagine in scala di grigi if input.shape[1] == 1: input = torch.cat([input, input, input], dim=1) return self.encode_vision(input)