Arjen Robben commited on
Commit
a1b1b32
·
1 Parent(s): 5544b1c

llama index upgrade version migration and ollama chat backend

Browse files
Files changed (7) hide show
  1. app.py +22 -33
  2. chat_template.py +2 -2
  3. chatbot.py +1 -2
  4. custom_io.py +2 -2
  5. poetry.lock +0 -0
  6. pyproject.toml +32 -0
  7. service_provider_config.py +4 -4
app.py CHANGED
@@ -4,27 +4,31 @@ import openai
4
  import os
5
  from dotenv import load_dotenv
6
  import phoenix as px
 
7
  import llama_index
8
- from llama_index import Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
9
- from llama_index.chat_engine.types import ChatMode
10
- from llama_index.llms import ChatMessage, MessageRole
 
 
 
11
  from llama_index.vector_stores.qdrant import QdrantVectorStore
12
- from llama_index.text_splitter import SentenceSplitter
13
- from llama_index.extractors import TitleExtractor
14
- from llama_index.ingestion import IngestionPipeline
15
  from chat_template import CHAT_TEXT_QA_PROMPT, TEXT_QA_SYSTEM_PROMPT
16
  from schemas import ChatbotVersion, ServiceProvider
17
  from chatbot import Chatbot, IndexBuilder
18
  from custom_io import MarkdownReader, UnstructuredReader, default_file_metadata_func
19
  from qdrant import client as qdrantClient
20
- from llama_index import set_global_service_context
21
 
22
  from service_provider_config import get_service_provider_config
23
 
24
  load_dotenv()
25
  # initial service setup
26
  px.launch_app()
27
- llama_index.set_global_handler("arize_phoenix")
28
  # llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
29
  openai.api_key = os.getenv("OPENAI_API_KEY")
30
 
@@ -32,16 +36,14 @@ IS_LOAD_FROM_VECTOR_STORE = True
32
  VDB_COLLECTION_NAME = "demo-v6"
33
  MODEL_NAME = ChatbotVersion.CHATGPT_4.value
34
 
35
-
36
  CHUNK_SIZE = 8191
37
  LLM, EMBED_MODEL = get_service_provider_config(
38
  service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
39
- service_context = ServiceContext.from_defaults(
40
- chunk_size=CHUNK_SIZE,
41
- llm=LLM,
42
- embed_model=EMBED_MODEL,
43
- )
44
- set_global_service_context(service_context)
45
 
46
 
47
  class AwesumIndexBuilder(IndexBuilder):
@@ -108,13 +110,13 @@ class AwesumCareToolChatbot(Chatbot):
108
  text_qa_template=CHAT_TEXT_QA_PROMPT)
109
 
110
  def _setup_tools(self):
111
- from llama_index.tools.query_engine import QueryEngineTool
112
  self.tools = QueryEngineTool.from_defaults(
113
  query_engine=self.query_engine)
114
  return super()._setup_tools()
115
 
116
  def _setup_chat_engine(self):
117
- from llama_index.agent import OpenAIAgent
118
  self.chat_engine = OpenAIAgent.from_tools(
119
  tools=[self.tools],
120
  llm=LLM,
@@ -151,22 +153,9 @@ index_builder = AwesumIndexBuilder(vdb_collection_name=VDB_COLLECTION_NAME,
151
  is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
152
 
153
  # gpt-3.5-turbo-1106, gpt-4-1106-preview
154
- awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
155
  awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
156
- awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
157
-
158
-
159
- def service_setup(model_name):
160
- CHUNK_SIZE = 1024
161
- LLM, EMBED_MODEL = get_service_provider_config(
162
- service_provider=ServiceProvider.OPENAI, model_name=model_name)
163
- service_context = ServiceContext.from_defaults(
164
- chunk_size=CHUNK_SIZE,
165
- llm=LLM,
166
- embed_model=EMBED_MODEL,
167
- )
168
- set_global_service_context(service_context)
169
- return LLM, EMBED_MODEL
170
 
171
  chatbot = gr.Chatbot(height=500)
172
 
@@ -184,7 +173,7 @@ with gr.Blocks(fill_height=True) as demo:
184
  with gr.Tab("With relevant context sent to system prompt"):
185
  context_interface = gr.ChatInterface(
186
  awesum_chatbot_context.stream_chat,
187
- examples=awesum_chatbot.CHAT_EXAMPLES,
188
  chatbot=chatbot
189
  )
190
 
 
4
  import os
5
  from dotenv import load_dotenv
6
  import phoenix as px
7
+
8
  import llama_index
9
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
10
+ from llama_index.core.chat_engine.types import ChatMode
11
+ from llama_index.core.llms import ChatMessage, MessageRole
12
+ from llama_index.core.node_parser import SentenceSplitter
13
+ from llama_index.core.extractors import TitleExtractor
14
+ from llama_index.core.ingestion import IngestionPipeline
15
  from llama_index.vector_stores.qdrant import QdrantVectorStore
16
+
17
+ from llama_index.llms.ollama import Ollama
18
+
19
  from chat_template import CHAT_TEXT_QA_PROMPT, TEXT_QA_SYSTEM_PROMPT
20
  from schemas import ChatbotVersion, ServiceProvider
21
  from chatbot import Chatbot, IndexBuilder
22
  from custom_io import MarkdownReader, UnstructuredReader, default_file_metadata_func
23
  from qdrant import client as qdrantClient
24
+ from llama_index.core import set_global_service_context
25
 
26
  from service_provider_config import get_service_provider_config
27
 
28
  load_dotenv()
29
  # initial service setup
30
  px.launch_app()
31
+ llama_index.core.set_global_handler("arize_phoenix")
32
  # llama_index.set_global_handler("wandb", run_args={"project": "llamaindex"})
33
  openai.api_key = os.getenv("OPENAI_API_KEY")
34
 
 
36
  VDB_COLLECTION_NAME = "demo-v6"
37
  MODEL_NAME = ChatbotVersion.CHATGPT_4.value
38
 
 
39
  CHUNK_SIZE = 8191
40
  LLM, EMBED_MODEL = get_service_provider_config(
41
  service_provider=ServiceProvider.OPENAI, model_name=MODEL_NAME)
42
+
43
+ LLM = Ollama(model="llama3.1:latest", request_timeout=60.0, context_window=10000)
44
+
45
+ Settings.embed_model = EMBED_MODEL
46
+ Settings.llm = LLM
 
47
 
48
 
49
  class AwesumIndexBuilder(IndexBuilder):
 
110
  text_qa_template=CHAT_TEXT_QA_PROMPT)
111
 
112
  def _setup_tools(self):
113
+ from llama_index.core.tools import QueryEngineTool
114
  self.tools = QueryEngineTool.from_defaults(
115
  query_engine=self.query_engine)
116
  return super()._setup_tools()
117
 
118
  def _setup_chat_engine(self):
119
+ from llama_index.agent.openai import OpenAIAgent
120
  self.chat_engine = OpenAIAgent.from_tools(
121
  tools=[self.tools],
122
  llm=LLM,
 
153
  is_load_from_vector_store=IS_LOAD_FROM_VECTOR_STORE)
154
 
155
  # gpt-3.5-turbo-1106, gpt-4-1106-preview
156
+ # awesum_chatbot = AwesumCareToolChatbot(model_name=model_name, index_builder=index_builder)
157
  awesum_chatbot_context = AweSumCareContextChatbot(model_name=model_name, index_builder=index_builder)
158
+ # awesum_chatbot_simple = AweSumCareSimpleChatbot(model_name=model_name, index_builder=index_builder)
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  chatbot = gr.Chatbot(height=500)
161
 
 
173
  with gr.Tab("With relevant context sent to system prompt"):
174
  context_interface = gr.ChatInterface(
175
  awesum_chatbot_context.stream_chat,
176
+ examples=AwesumCareToolChatbot.CHAT_EXAMPLES,
177
  chatbot=chatbot
178
  )
179
 
chat_template.py CHANGED
@@ -1,5 +1,5 @@
1
- from llama_index.llms.base import ChatMessage, MessageRole
2
- from llama_index.prompts.base import ChatPromptTemplate
3
 
4
  # text qa prompt
5
  TEXT_QA_SYSTEM_PROMPT = ChatMessage(
 
1
+ from llama_index.core.llms import ChatMessage, MessageRole
2
+ from llama_index.core import ChatPromptTemplate
3
 
4
  # text qa prompt
5
  TEXT_QA_SYSTEM_PROMPT = ChatMessage(
chatbot.py CHANGED
@@ -8,8 +8,7 @@ from dotenv import load_dotenv
8
  from openai import OpenAI
9
  import phoenix as px
10
  import llama_index
11
- from llama_index import OpenAIEmbedding
12
- from llama_index.llms import ChatMessage, MessageRole
13
 
14
  load_dotenv()
15
 
 
8
  from openai import OpenAI
9
  import phoenix as px
10
  import llama_index
11
+ from llama_index.core.llms import ChatMessage, MessageRole
 
12
 
13
  load_dotenv()
14
 
custom_io.py CHANGED
@@ -11,8 +11,8 @@ from pathlib import Path
11
  import re
12
  from typing import Any, Dict, List, Optional
13
 
14
- from llama_index.readers.base import BaseReader
15
- from llama_index.readers.schema.base import Document
16
 
17
 
18
  class UnstructuredReader(BaseReader):
 
11
  import re
12
  from typing import Any, Dict, List, Optional
13
 
14
+ from llama_index.core.readers.base import BaseReader
15
+ from llama_index.core import Document
16
 
17
 
18
  class UnstructuredReader(BaseReader):
poetry.lock ADDED
The diff for this file is too large to render. See raw diff
 
pyproject.toml ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "awesumcare-demo"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = ["Ray Yip"]
6
+ readme = "README.md"
7
+ package-mode = false
8
+
9
+ [tool.poetry.dependencies]
10
+ python = ">=3.10,<3.13"
11
+ gradio = "^4.29.0"
12
+ llama-index = "^0.10.58"
13
+ nltk = "^3.8.1"
14
+ phoenix = "^0.9.1"
15
+ openai = "^1.37.0"
16
+ python-dotenv = "^1.0.1"
17
+ qdrant-client = "^1.10.1"
18
+ arize-phoenix = "^4.14.1"
19
+ fastapi = ">=0.80"
20
+ llama-index-vector-stores-qdrant = "^0.2.14"
21
+ llama-index-agent-openai = "^0.2.9"
22
+ llama-index-embeddings-azure-openai = "^0.1.11"
23
+ llama-index-embeddings-openai = "^0.1.11"
24
+ llama-index-llms-openai = "^0.1.27"
25
+ llama-index-callbacks-arize-phoenix = "^0.1.6"
26
+ llama-index-llms-ollama = "^0.2.0"
27
+
28
+
29
+
30
+ [build-system]
31
+ requires = ["poetry-core"]
32
+ build-backend = "poetry.core.masonry.api"
service_provider_config.py CHANGED
@@ -1,8 +1,8 @@
1
  from dotenv import load_dotenv
2
- from llama_index import OpenAIEmbedding
3
- from llama_index.llms import OpenAI
4
- from llama_index.llms import AzureOpenAI
5
- from llama_index.embeddings import AzureOpenAIEmbedding
6
  from schemas import ServiceProvider, ChatbotVersion
7
 
8
  load_dotenv()
 
1
  from dotenv import load_dotenv
2
+ from llama_index.embeddings.openai import OpenAIEmbedding
3
+ from llama_index.llms.openai import OpenAI
4
+ from llama_index.embeddings.azure_openai import AzureOpenAI
5
+ from llama_index.embeddings.azure_openai import AzureOpenAIEmbedding
6
  from schemas import ServiceProvider, ChatbotVersion
7
 
8
  load_dotenv()