Spaces:
Running
Running
ray
commited on
Commit
·
dfc6dc5
1
Parent(s):
28f4c9d
initial commit
Browse files- .gitignore +3 -0
- app.py +143 -0
- chat_template.py +32 -0
- chatbot.py +151 -0
- custom_io.py +73 -0
- qdrant.py +5 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.env
|
2 |
+
**/__pycache__
|
3 |
+
awesumcare_data
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import List
|
3 |
+
import gradio as gr
|
4 |
+
import openai
|
5 |
+
import os
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import phoenix as px
|
8 |
+
import llama_index
|
9 |
+
from llama_index import OpenAIEmbedding, Prompt, ServiceContext, VectorStoreIndex, SimpleDirectoryReader
|
10 |
+
from llama_index.chat_engine.types import ChatMode
|
11 |
+
from llama_index.llms import ChatMessage, MessageRole, OpenAI
|
12 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
13 |
+
from llama_index.text_splitter import SentenceSplitter
|
14 |
+
from llama_index.extractors import TitleExtractor
|
15 |
+
from llama_index.ingestion import IngestionPipeline
|
16 |
+
from chat_template import CHAT_TEXT_QA_PROMPT
|
17 |
+
from chatbot import Chatbot, ChatbotVersion
|
18 |
+
from custom_io import UnstructuredReader, default_file_metadata_func
|
19 |
+
from qdrant import client as qdrantClient
|
20 |
+
|
21 |
+
load_dotenv()
|
22 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
23 |
+
|
24 |
+
|
25 |
+
class AwesumCareChatbot(Chatbot):
|
26 |
+
DENIED_ANSWER_PROMPT = ""
|
27 |
+
SYSTEM_PROMPT = ""
|
28 |
+
CHAT_EXAMPLES = [
|
29 |
+
"什麼是安心三寶?",
|
30 |
+
"點樣立平安紙?"
|
31 |
+
]
|
32 |
+
|
33 |
+
def _load_doucments(self):
|
34 |
+
dir_reader = SimpleDirectoryReader('./awesumcare_data', file_extractor={
|
35 |
+
".pdf": UnstructuredReader(),
|
36 |
+
".docx": UnstructuredReader(),
|
37 |
+
".pptx": UnstructuredReader(),
|
38 |
+
},
|
39 |
+
recursive=True,
|
40 |
+
exclude=["*.png", "*.pptx"],
|
41 |
+
file_metadata=default_file_metadata_func)
|
42 |
+
|
43 |
+
self.documents = dir_reader.load_data()
|
44 |
+
super()._load_doucments()
|
45 |
+
|
46 |
+
def _setup_service_context(self):
|
47 |
+
self.service_context = ServiceContext.from_defaults(
|
48 |
+
chunk_size=self.chunk_size,
|
49 |
+
llm=self.llm,
|
50 |
+
embed_model=self.embed_model
|
51 |
+
)
|
52 |
+
super()._setup_service_context()
|
53 |
+
|
54 |
+
def _setup_vector_store(self):
|
55 |
+
self.vector_store = QdrantVectorStore(
|
56 |
+
client=qdrantClient, collection_name=self.vdb_collection_name)
|
57 |
+
super()._setup_vector_store()
|
58 |
+
|
59 |
+
def _setup_index(self):
|
60 |
+
if self.vdb_collection_name in [col.name for col in qdrantClient.get_collections().collections] and qdrantClient.get_collection(self.vdb_collection_name).vectors_count > 0:
|
61 |
+
self.index = VectorStoreIndex.from_vector_store(
|
62 |
+
self.vector_store, service_context=self.service_context)
|
63 |
+
print("set up index from vector store")
|
64 |
+
return
|
65 |
+
pipeline = IngestionPipeline(
|
66 |
+
transformations=[
|
67 |
+
SentenceSplitter(),
|
68 |
+
OpenAIEmbedding(),
|
69 |
+
],
|
70 |
+
vector_store=self.vector_store,
|
71 |
+
)
|
72 |
+
pipeline.run(documents=self.documents)
|
73 |
+
self.index = VectorStoreIndex.from_vector_store(
|
74 |
+
self.vector_store, service_context=self.service_context)
|
75 |
+
super()._setup_index()
|
76 |
+
|
77 |
+
# def _setup_index(self):
|
78 |
+
# self.index = VectorStoreIndex.from_documents(
|
79 |
+
# self.documents,
|
80 |
+
# service_context=self.service_context
|
81 |
+
# )
|
82 |
+
# super()._setup_index()
|
83 |
+
|
84 |
+
def _setup_chat_engine(self):
|
85 |
+
# testing #
|
86 |
+
from llama_index.agent import OpenAIAgent
|
87 |
+
from llama_index.tools.query_engine import QueryEngineTool
|
88 |
+
|
89 |
+
query_engine = self.index.as_query_engine(
|
90 |
+
text_qa_template=CHAT_TEXT_QA_PROMPT)
|
91 |
+
query_engine_tool = QueryEngineTool.from_defaults(
|
92 |
+
query_engine=query_engine)
|
93 |
+
self.chat_engine = OpenAIAgent.from_tools(
|
94 |
+
tools=[query_engine_tool],
|
95 |
+
llm=self.service_context.llm,
|
96 |
+
similarity_top_k=1,
|
97 |
+
verbose=True
|
98 |
+
)
|
99 |
+
print("set up agent as chat engine")
|
100 |
+
# testing #
|
101 |
+
# self.chat_engine = self.index.as_chat_engine(
|
102 |
+
# chat_mode=ChatMode.BEST,
|
103 |
+
# similarity_top_k=5,
|
104 |
+
# text_qa_template=CHAT_TEXT_QA_PROMPT)
|
105 |
+
super()._setup_chat_engine()
|
106 |
+
|
107 |
+
|
108 |
+
# gpt-3.5-turbo-1106, gpt-4-1106-preview
|
109 |
+
awesum_chatbot = AwesumCareChatbot(ChatbotVersion.CHATGPT_35.value,
|
110 |
+
chunk_size=2048,
|
111 |
+
vdb_collection_name="v2")
|
112 |
+
|
113 |
+
|
114 |
+
def vote(data: gr.LikeData):
|
115 |
+
if data.liked:
|
116 |
+
gr.Info("You up-voted this response: " + data.value)
|
117 |
+
else:
|
118 |
+
gr.Info("You down-voted this response: " + data.value)
|
119 |
+
|
120 |
+
|
121 |
+
chatbot = gr.Chatbot()
|
122 |
+
|
123 |
+
with gr.Blocks() as demo:
|
124 |
+
gr.Markdown("# Awesum Care demo")
|
125 |
+
|
126 |
+
with gr.Tab("With awesum care data prepared"):
|
127 |
+
gr.ChatInterface(
|
128 |
+
awesum_chatbot.stream_chat,
|
129 |
+
chatbot=chatbot,
|
130 |
+
examples=awesum_chatbot.CHAT_EXAMPLES,
|
131 |
+
)
|
132 |
+
chatbot.like(vote, None, None)
|
133 |
+
|
134 |
+
with gr.Tab("With Initial System Prompt (a.k.a. prompt wrapper)"):
|
135 |
+
gr.ChatInterface(
|
136 |
+
awesum_chatbot.predict_with_prompt_wrapper, examples=awesum_chatbot.CHAT_EXAMPLES)
|
137 |
+
|
138 |
+
with gr.Tab("Vanilla ChatGPT without modification"):
|
139 |
+
gr.ChatInterface(awesum_chatbot.predict_vanilla_chatgpt,
|
140 |
+
examples=awesum_chatbot.CHAT_EXAMPLES)
|
141 |
+
|
142 |
+
demo.queue()
|
143 |
+
demo.launch()
|
chat_template.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.llms.base import ChatMessage, MessageRole
|
2 |
+
from llama_index.prompts.base import ChatPromptTemplate
|
3 |
+
|
4 |
+
# text qa prompt
|
5 |
+
TEXT_QA_SYSTEM_PROMPT = ChatMessage(
|
6 |
+
content=(
|
7 |
+
"You are '安心三寶', a specialized chatbot for elderly users, trusted for providing "
|
8 |
+
"detailed information on legal and medical documents like '平安紙', '持久授權書', and '預設醫療指示'.\n"
|
9 |
+
"Always answer queries using the context information provided, focusing on delivering "
|
10 |
+
"accurate, comprehensive, and user-friendly responses.\n"
|
11 |
+
),
|
12 |
+
role=MessageRole.SYSTEM,
|
13 |
+
)
|
14 |
+
|
15 |
+
TEXT_QA_PROMPT_TMPL_MSGS = [
|
16 |
+
TEXT_QA_SYSTEM_PROMPT,
|
17 |
+
ChatMessage(
|
18 |
+
content=(
|
19 |
+
"Context information is below.\n"
|
20 |
+
"---------------------\n"
|
21 |
+
"{context_str}\n"
|
22 |
+
"---------------------\n"
|
23 |
+
"Given the context information and not prior knowledge, "
|
24 |
+
"answer the query in a warm, approachable manner, ensuring clarity and precision.\n"
|
25 |
+
"Query: {query_str}\n"
|
26 |
+
"Answer: "
|
27 |
+
),
|
28 |
+
role=MessageRole.USER,
|
29 |
+
),
|
30 |
+
]
|
31 |
+
|
32 |
+
CHAT_TEXT_QA_PROMPT = ChatPromptTemplate(message_templates=TEXT_QA_PROMPT_TMPL_MSGS)
|
chatbot.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from typing import List
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from typing import List
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from openai import OpenAI
|
8 |
+
import phoenix as px
|
9 |
+
import llama_index
|
10 |
+
from llama_index import OpenAIEmbedding
|
11 |
+
from llama_index.llms import ChatMessage, MessageRole, OpenAI
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
|
16 |
+
class Chatbot:
|
17 |
+
SYSTEM_PROMPT = ""
|
18 |
+
DENIED_ANSWER_PROMPT = ""
|
19 |
+
CHAT_EXAMPLES = []
|
20 |
+
|
21 |
+
def __init__(self, model_name, chunk_size, vdb_collection_name="test_store"):
|
22 |
+
self.model_name = model_name
|
23 |
+
self.llm = OpenAI(model=self.model_name)
|
24 |
+
self.embed_model = OpenAIEmbedding()
|
25 |
+
self.chunk_size = chunk_size
|
26 |
+
|
27 |
+
self.documents = None
|
28 |
+
self.index = None
|
29 |
+
self.chat_engine = None
|
30 |
+
self.service_context = None
|
31 |
+
self.vector_store = None
|
32 |
+
self.vdb_collection_name = vdb_collection_name
|
33 |
+
|
34 |
+
self._setup_chatbot()
|
35 |
+
|
36 |
+
def _setup_chatbot(self):
|
37 |
+
self._setup_observer()
|
38 |
+
self._setup_service_context()
|
39 |
+
self._setup_vector_store()
|
40 |
+
self._load_doucments()
|
41 |
+
self._setup_index()
|
42 |
+
self._setup_chat_engine()
|
43 |
+
|
44 |
+
def _setup_observer(self):
|
45 |
+
px.launch_app()
|
46 |
+
llama_index.set_global_handler("arize_phoenix")
|
47 |
+
|
48 |
+
def _load_doucments(self):
|
49 |
+
pass
|
50 |
+
print(f"Loaded {len(self.documents)} docs")
|
51 |
+
|
52 |
+
def _setup_service_context(self):
|
53 |
+
pass
|
54 |
+
print("Setup service context...")
|
55 |
+
|
56 |
+
def _setup_vector_store(self):
|
57 |
+
pass
|
58 |
+
print("Setup vector store...")
|
59 |
+
|
60 |
+
def _setup_index(self):
|
61 |
+
if self.documents is None:
|
62 |
+
raise ValueError("No documents loaded")
|
63 |
+
pass
|
64 |
+
print("Built index...")
|
65 |
+
|
66 |
+
def _setup_chat_engine(self):
|
67 |
+
if self.index is None:
|
68 |
+
raise ValueError("No index built")
|
69 |
+
pass
|
70 |
+
print("Setup chat engine...")
|
71 |
+
|
72 |
+
def stream_chat(self, message, history):
|
73 |
+
print(history)
|
74 |
+
print(self.convert_to_chat_messages(history))
|
75 |
+
response = self.chat_engine.stream_chat(
|
76 |
+
message, chat_history=self.convert_to_chat_messages(history)
|
77 |
+
)
|
78 |
+
# Stream tokens as they are generated
|
79 |
+
partial_message = ""
|
80 |
+
for token in response.response_gen:
|
81 |
+
partial_message += token
|
82 |
+
yield partial_message
|
83 |
+
|
84 |
+
urls = [source.node.metadata.get(
|
85 |
+
"file_name") for source in response.source_nodes if source.score >= 0.78 and source.node.metadata.get("file_name")]
|
86 |
+
if urls:
|
87 |
+
urls = list(set(urls))
|
88 |
+
url_section = "\n \n\n---\n\n參考: \n" + \
|
89 |
+
"\n".join(f"- {url}" for url in urls)
|
90 |
+
partial_message += url_section
|
91 |
+
yield partial_message
|
92 |
+
|
93 |
+
def convert_to_chat_messages(self, history: List[List[str]]) -> List[ChatMessage]:
|
94 |
+
chat_messages = [ChatMessage(
|
95 |
+
role=MessageRole.SYSTEM, content=self.SYSTEM_PROMPT)]
|
96 |
+
for conversation in history[-3:]:
|
97 |
+
for index, message in enumerate(conversation):
|
98 |
+
role = MessageRole.USER if index % 2 == 0 else MessageRole.ASSISTANT
|
99 |
+
clean_message = re.sub(
|
100 |
+
r"\n \n\n---\n\n參考: \n.*$", "", message, flags=re.DOTALL)
|
101 |
+
chat_messages.append(ChatMessage(
|
102 |
+
role=role, content=clean_message.strip()))
|
103 |
+
return chat_messages
|
104 |
+
|
105 |
+
def predict_with_rag(self, message, history):
|
106 |
+
return self.stream_chat(message, history)
|
107 |
+
|
108 |
+
# barebone chatgpt methods, shared across all chatbot instance
|
109 |
+
def _invoke_chatgpt(self, history, message, is_include_system_prompt=False):
|
110 |
+
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
111 |
+
history_openai_format = []
|
112 |
+
if is_include_system_prompt:
|
113 |
+
history_openai_format.append(
|
114 |
+
{"role": "system", "content": self.SYSTEM_PROMPT})
|
115 |
+
for human, assistant in history:
|
116 |
+
history_openai_format.append({"role": "user", "content": human})
|
117 |
+
history_openai_format.append(
|
118 |
+
{"role": "assistant", "content": assistant})
|
119 |
+
history_openai_format.append({"role": "user", "content": message})
|
120 |
+
|
121 |
+
import openai
|
122 |
+
print(openai.__version__)
|
123 |
+
stream = openai_client.chat.completions.create(
|
124 |
+
model=self.model_name,
|
125 |
+
messages=history_openai_format,
|
126 |
+
temperature=1.0,
|
127 |
+
stream=True)
|
128 |
+
for part in stream:
|
129 |
+
yield part.choices[0].delta.content or ""
|
130 |
+
# partial_message = ""
|
131 |
+
# for chunk in response:
|
132 |
+
# if len(chunk["choices"][0]["delta"]) != 0:
|
133 |
+
# partial_message = partial_message + \
|
134 |
+
# chunk["choices"][0]["delta"]["content"]
|
135 |
+
# yield partial_message
|
136 |
+
|
137 |
+
# For 'With Prompt Wrapper' - Add system prompt, no Pinecone
|
138 |
+
def predict_with_prompt_wrapper(self, message, history):
|
139 |
+
yield from self._invoke_chatgpt(history, message, is_include_system_prompt=True)
|
140 |
+
|
141 |
+
# For 'Vanilla ChatGPT' - No system prompt
|
142 |
+
def predict_vanilla_chatgpt(self, message, history):
|
143 |
+
yield from self._invoke_chatgpt(history, message)
|
144 |
+
|
145 |
+
|
146 |
+
# make a enum of chatbot type and string
|
147 |
+
|
148 |
+
|
149 |
+
class ChatbotVersion(str, Enum):
|
150 |
+
CHATGPT_35 = "gpt-3.5-turbo-1106"
|
151 |
+
CHATGPT_4 = "gpt-4-1106-preview"
|
custom_io.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Unstructured file reader.
|
2 |
+
|
3 |
+
A parser for unstructured text files using Unstructured.io.
|
4 |
+
Supports .txt, .docx, .pptx, .jpg, .png, .eml, .html, and .pdf documents.
|
5 |
+
|
6 |
+
"""
|
7 |
+
from datetime import datetime
|
8 |
+
import mimetypes
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
from typing import Any, Dict, List, Optional
|
12 |
+
|
13 |
+
from llama_index.readers.base import BaseReader
|
14 |
+
from llama_index.readers.schema.base import Document
|
15 |
+
|
16 |
+
|
17 |
+
class UnstructuredReader(BaseReader):
|
18 |
+
"""General unstructured text reader for a variety of files."""
|
19 |
+
|
20 |
+
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
21 |
+
"""Init params."""
|
22 |
+
super().__init__(*args, **kwargs)
|
23 |
+
|
24 |
+
# Prerequisite for Unstructured.io to work
|
25 |
+
import nltk
|
26 |
+
|
27 |
+
nltk.download("punkt")
|
28 |
+
nltk.download("averaged_perceptron_tagger")
|
29 |
+
|
30 |
+
def load_data(
|
31 |
+
self,
|
32 |
+
file: Path,
|
33 |
+
extra_info: Optional[Dict] = None,
|
34 |
+
split_documents: Optional[bool] = True,
|
35 |
+
) -> List[Document]:
|
36 |
+
"""Parse file."""
|
37 |
+
from unstructured.partition.auto import partition
|
38 |
+
|
39 |
+
elements = partition(str(file))
|
40 |
+
text_chunks = [" ".join(str(el).split()) for el in elements]
|
41 |
+
|
42 |
+
if split_documents:
|
43 |
+
return [
|
44 |
+
Document(text=chunk, extra_info=extra_info or {})
|
45 |
+
for chunk in text_chunks
|
46 |
+
]
|
47 |
+
else:
|
48 |
+
return [
|
49 |
+
Document(text="\n\n".join(text_chunks), extra_info=extra_info or {})
|
50 |
+
]
|
51 |
+
|
52 |
+
|
53 |
+
def default_file_metadata_func(file_path: str) -> Dict:
|
54 |
+
"""Get some handy metadate from filesystem.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
file_path: str: file path in str
|
58 |
+
"""
|
59 |
+
return {
|
60 |
+
"file_path": file_path,
|
61 |
+
"file_name": os.path.basename(file_path),
|
62 |
+
"file_type": mimetypes.guess_type(file_path)[0],
|
63 |
+
"file_size": os.path.getsize(file_path),
|
64 |
+
"creation_date": datetime.fromtimestamp(
|
65 |
+
Path(file_path).stat().st_ctime
|
66 |
+
).strftime("%Y-%m-%d"),
|
67 |
+
"last_modified_date": datetime.fromtimestamp(
|
68 |
+
Path(file_path).stat().st_mtime
|
69 |
+
).strftime("%Y-%m-%d"),
|
70 |
+
"last_accessed_date": datetime.fromtimestamp(
|
71 |
+
Path(file_path).stat().st_atime
|
72 |
+
).strftime("%Y-%m-%d"),
|
73 |
+
}
|
qdrant.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import qdrant_client
|
3 |
+
|
4 |
+
|
5 |
+
client = qdrant_client.QdrantClient(path="/tmp/total_qdrant/")
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
openai
|
3 |
+
llama_index
|
4 |
+
arize-phoenix[experimental]
|
5 |
+
pypdf
|
6 |
+
gradio
|
7 |
+
# unstructure io
|