Spaces:
Running
on
T4
Running
on
T4
import torch | |
from PIL import Image | |
from RealESRGAN import RealESRGAN | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model2 = RealESRGAN(device, scale=2) | |
model2.load_weights('weights/RealESRGAN_x2.pth', download=True) | |
model4 = RealESRGAN(device, scale=4) | |
model4.load_weights('weights/RealESRGAN_x4.pth', download=True) | |
model8 = RealESRGAN(device, scale=8) | |
model8.load_weights('weights/RealESRGAN_x8.pth', download=True) | |
def inference(image, size): | |
global model2 | |
global model4 | |
global model8 | |
if image is None: | |
raise gr.Error("Image not uploaded") | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if size == '2x': | |
try: | |
result = model2.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model2 = RealESRGAN(device, scale=2) | |
model2.load_weights('weights/RealESRGAN_x2.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
elif size == '4x': | |
try: | |
result = model4.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model4 = RealESRGAN(device, scale=4) | |
model4.load_weights('weights/RealESRGAN_x4.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
else: | |
try: | |
width, height = image.size | |
if width >= 5000 or height >= 5000: | |
raise gr.Error("The image is too large.") | |
result = model8.predict(image.convert('RGB')) | |
except torch.cuda.OutOfMemoryError as e: | |
print(e) | |
model8 = RealESRGAN(device, scale=8) | |
model8.load_weights('weights/RealESRGAN_x8.pth', download=False) | |
result = model2.predict(image.convert('RGB')) | |
print(f"Image size ({device}): {size} ... OK") | |
return result | |
title = "Face Real ESRGAN UpScale: 2x 4x 8x" | |
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot" | |
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>" | |
gr.Interface(inference, | |
[gr.Image(type="pil"), | |
gr.Radio(["2x", "4x", "8x"], | |
type="value", | |
value="2x", | |
label="Resolution model")], | |
gr.Image(type="pil", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[["groot.jpeg", "2x"]], | |
flagging_mode="never", | |
cache_mode="lazy", | |
delete_cache=(44000, 44000), | |
).queue(api_open=True).launch(show_error=True, show_api=True) | |